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Introduction

Abstract
This paper presents a SIS-VS epidemic model of a variable population size of constant recruitment with non - linear incidence rate. Two 
control variables which are, the media coverage and treatment is applied to control the susceptible, vaccinated and the infected individuals 
by minimizing the total number of infected individual and the cost associated with it on [0, 1]. The model possess two equilibrium points 
namely, the disease free and endemic equilibrium. From the derivation of the basic reproduction number (R0), it is observed that if R0 < 1 
the disease free equilibrium is locally and globally stable. Also, if R0 > 1 the endemic equilibrium is both locally and globally stable.
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In epidemiology, the understanding of the transmission dynamics of compartmental models of emerging and reemerging disease 
is based on optimizing the use of limited resources in curtailing the full blown spread of the disease in the event of an epidemic 
breakout. Mathematical model as an important tool in epidemiology, takes into account, many factors that bring about disease 
development and eradication, e.g transmission and recovery rate, mortality rate etc [1-3]. 

Vaccination is another well-known method in controlling disease spread [4,5]. But, it is impossible to vaccinate all susceptible 
individuals, especially in poor and third world countries where vaccines are not readily affordable. Clinically, vaccination brings 
about a temporary immunity to the disease, and once a vaccine wanes in a vaccinated individual, the vaccinated individual becomes 
susceptible to the disease again. The incidence rate is also an important factor in disease transmission, which is an effective contact 
between the susceptible and the infectious individual. Several authors have employed the use of non - linear incidence rate in 
describing qualitatively, the dynamics of disease transmission in human host population see [6-10].

Another important epidemic threshold is the basic reproduction number (R0). It is established when cases of secondary infections 
arises when an infected individual is introduced into a host population of susceptible individual during the infected individual's 
lifetime [11,12]. R0 helps in determining appropriate control measures to stop a disease spread, and it is obtained using the next 
generation matrix method [11]. Literatures of Proved useful in studying the local and global behavior of the linearizations of 
epidemic models around their equilibrium solutions [12-18].

Optimal control theory is an important tool in mathematics used in making decision involving complex epidemiological situations. 
Literature of worked on finding the best and effective optimum strategy to minimize disease spread [15,16,18,20]. In this paper, 
the cost of media coverage and treatment is used to minimize the number of infected individuals who become infected due to an 
epidemic breakout. The media coverage and treatment were used as control measures and the optimal intervention strategies for 
the disease control was established using the Pontryagin maximum principle (PMP). Also, the local and global stabilities of model 
system is investigated, and the geo- metric approach [21] is employed to analyze the global stability of the model at its endemic 
equilibrium solutions.

The rest of the paper is divided as follows; Section 2, involves the mathematical model formulation, positivity, and obtaining the 
two equilibria. In section 3, the basic reproduction number is obtained. Also, section 4, presents the local and global stability 
analysis for the disease-free and endemic equilibrium. While in section 5 the optimal control, existence of the control and the 
optimality of the system is studied and analyzed. Finally, section 6, deals with the numerical simulations and conclusion.
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Positivity, Boundedness and Equilibrium Solutions

In this model, the force of infection is taken as 
( ) ( )( ) 

1
I t S tC I

S
α

β
=

+  where, β measures the infection forces of the disease and 1 Sβ+  
measures the inhibition effect from the change in the behavior of the susceptible when their number increases.

Subject to initial conditions S (0) = S0, I (0) = I0, V (0) = V0.

The non - negative octant

is positively invariant with respect to (1).

Theorem 1:  All the solutions in (1) are uniformly bounded in the closed Set

where  Also

Proof. Let (S (t), I (t), V (t)) be any solution with non negative initial conditions (S0 ≥ 0, I0 ≥ 0,V0 ≥  0). From (1), we define a function

Then

A first-order, deterministic model with non-linear incidence rate and constant recruitment A, is considered. The model is subdivided 
into compartmental state variables as, susceptible individuals (S), infected individuals (I) and vaccinated individuals (V). Also, several 
parameters incorporated into the model are, qA which represents the fraction of recruited individuals who are vaccinated into the 
susceptible population, pS is the fraction of vaccinated susceptible. Also, θ is the disease induced death rate for I compartment, 
represents the progression rate from I to S compartment, δ  is the rate at which vaccine wanes thereby making vaccinated individuals 
γ to become susceptible to the disease again. μ is the natural death rate. Following the assumptions made and several state variables 
and parameters incorporated into the model formulation, the following differential equation governing the model is thus given as

(1)
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on applying the differential inequality theory, we obtain
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As t →∞ , sup . Furthermore, from the third equation in (1)

Also, applying the standard comparison theorem, (8) yields 

Hence, all the solutions of (1) starts and end in 3
+  and are restricted to ∆ which is a bounded and a positively invariant region. 

Model system (1) will be studied in ∆ since it is epidemiologically reasonable and mathematically well posed. This completes the 
proof.    

Theorem 2: In the interior of  3
+

 there exists disease-free equilibrium points E0 if R0 < 1, and there exists endemic equilibrium 
points E* if R0 > 1. 

In the interior of  3
+  there are two possible equilibrium solutions by equating the right hand side of (1) to 0 at when I = V = 0 

and I = V ≠ 0. 

Proof. Equating the right hand side of (1) to zero,                             

such that when disease is absent from the system (11) i.e., I = V = 0, then                                               

Also, when disease is present in the system (11) i.e. S = I = V ≠ 0  yields  

The next generation operator method [7], is employed to obtain R0. Say,   ( )x f x=  where the components ( )  ( ) -  ( )i i if x F x V x=
for i = 1,….. n, then Fi(x) is the rate of appearance of new infections in compartment i. While ( ) ( ),i iV x V x− +−  with ( )iV x+  the rate 
of transfer of individuals into compartment i by any other means, and ( )iV x− the rate of transfer out of compartment i. Such that

(8)

(9)

Therefore, as  for all t > 0, since S ≥ 0, I  ≥ 0,V  ≥ 0 then

(10)

(11)

(12)

(13)

Reproduction Number (R0)
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Where

The R0 as the spectral of a positive matrix is the largest eigenvalue given as

Theorem 3: The disease free equilibrium of (1) is locally asymptotically stable if R0 < 1 and unstable if R0 ≥ 1.

The Jacobian of (1) at disease free equilibrium solutions (11) is given as [14].

The characteristics polynomial of (17) is

and the characteristics equation for the remaining determinant is given by

where       

Applying the Routh-Hurwitz principle, (17) has a strictly negative root if and only if q1 ≤ 0 and q2 ≤ 0 and q1 ≥ q2. Then       

where M1 is given as 
CA

p µ+
. Using the principle of the trace-determinant plane, the trace of (17) yields      

Local Stability Analysis of Disease-Free Equilibrium

(14)

(15)

(16)

Stability Analysis of the Model
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Substituting the second equation in (1), yields

Since all the parameters and variables involved in the model system (1) are all positive constants, then V ≤ 0 for R0 < 1 and V = 0 
if and only if I = 0. Hence, the disease-free steady-state is globally asymptotically stable.

Theorem 5: The endemic equilibrium point is locally asymptotically stable if and only if R0 > 1 [14].

The Jacobian matrix of (1) at the endemic equilibrium points (12) is yields 

The characteristics polynomial of (28) yields

Where

It is observed from (29 - 31) that, K1 > 0, K2 > 0, K3 (1-R0) > 0. Hence, K1K2 - K3 > 0. by the Routh-Hurwitz criteria, R0 > 1 implies 
that the endemic equilibrium is locally asymptotically stable [18].

this further shows that

Hence, the disease-free equilibrium is locally aysmptotically stable.                  

Theorem 4: The disease-free equilibrium of system (1) is globally asymptotically stable if R0 < 1 [15,16].

Proof. Given that R0 < 1, there exists only the disease free equilibrium E0.   

Consider a Lyapunov function candidate 3 ( ,  ,  ) :  V S I V +→ 
 defined as 

Global Stability of Disease-Free Equilibrium

Local Stability of Endemic Equilibrium

 λ 0.01 0.03 0.05 0.08 0.1

*
aπ 0.355 0.507 0.536 0.543 0.543

(23)

(24)

(25)

since 0 ,   
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In this section, the Li and Muldoney, approach is employed [21].

Where x (t, x0) denotes the solution of (33) satisfying x (0, x0) = x0.

The following two assumptions were made.

i  There exists a compact absorbing set K ∈  ∆  .

ii  The solution (32) has a unique equilibrium x  in Ω .

matrix valued function. That is, C1 and Q-1 (x) exists for x ∈  ∆ . Let μ be a Lozinskii measure on d dR × , where 2
n

d  
=  
 

. Define a 
quantity q2 as

where, 1 [2] 1
fM Q Q QJ Q− −= + . The matrix Qf is obtained by replacing each entry qij of Q by its derivative in the direction of fi, 

(qij) and J[2] is the Second additive compound matrix of the Jacobian Matrix J of (33).

The second additive compound matrix of (36) is

Let the function              

where       

and

Proof. By the theorem above, if R0 > 1, then, E* is the unique endemic equilibrium in the interior of ∆. The persistence of (1) 
coupled with its bounded solutions shows that the compact absorbing set ∆ exists. The Jacobian matrix J of (1) is obtain as

Let Q :  x →  Q(x) be an

Theorem 6: Let Z ∈  Rn n be an open set and f : x →  f(x) ∈  Rn be C1 function for x in an open se ∆ ∈  Rn. Consider the differential 
equation.

Global Stability of Endemic Equilibrium

' ( ),x f x= (33)

(34)

(35)

(36)
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(39)

(40)
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Sequential equilibrium

and         

so that

Also,               

such that (41) written as a block form yields  

Let (u, v, w) be the vectors in 3


, we select a norm in 3


 as |(u, v, w)| = max ,u u w +    and let μ be the Lozinskii measure 
with respect to this norm, such that            

Where           

and                         

are the matrix norms with respect to l1 vector norm and  is the lozinskii measure with respect to l1 norm. Also,

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

, whereTherefore,
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so that    

Then

The controls imposed on (1) are the use of treatment and media coverage, such that 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1. The controlled 
model is given by                          

While, the control set U is Lebesgue measurable and defined as      

Also, a quadratic, non-linear cost control is employed to analyze the behavior of the cost implementation of the treatments and 
media coverage. The goal is to minimize the total number of infectious individual and at the same time minimize the cost of 
treatment and media coverage in the host population. L1 denotes the total number of infectious individual taken as a measure of 
death in the event of epidemic breakout, L2  

2
1

2
u  denotes the cost of treatments,while L3 

3
2

3
u  denotes the cost of media coverage.   

Moreover, L1, L2 and L3 are the relative weights attached to the minimization cost of the total number of infectious individual, 
treatment cost and media coverage cost respectively.     

where u = [u1; u2 : subject to constraints of (54) and (55) with

Theorem 7: If the objective functional  

The objective functional is defined as   

subject to initial conditions    

(51)

(52)

(53)

(56)

implies that . Thus, the endemic equilibrium E�* of (1) is globally asymptotically stable.

Optimal Control

Existence and Uniqueness of the Control

(54)

.

(55).
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Proof. According to fleming and rischel [22], the control and state variables are non-negative, and the two control variable u1, u2 
ε U is closed and convex. Also, the integrand in the objective functional defined as  is convex on U.

Hence, by the boundedness of the state and adjoint system, the optimal control exists and is unique for small T.

so that

The optimal control  , are respectively given as

Theorem 8. Given that  of (54), there exists adjoint variables

                                                   . The derived hamiltonian is given by

This implies that

where

where

There exists constants b1,b2 > 0 and β > 1 such that  is convex and satisfy 

S(0) = S0, I(0) = I0 and  R(0) = R0, there exists optimal control such that

(63),

(62),

(61),

,

(60).

(59),

(58),

(57),

with final condition .
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The optimality system of the state equations are

and

While the adjoint equations are

with the transversality conditions as,

Numerical simulations and graphical illustrations is performed in order to validate the analytical results of this study. Different 
initial starts and parameter values have been used to obtain the graphical view of the results. The optimal control numerical 
algorithm is done with the aid of MATLAB software using the forward-backward sweep technique. Also the optimality of the 
system solved using the fourth-order Runge-Kutta.

Optimality System

Numerical Simulations

(64),

(65).

(66)
,

(67).

(68),

(69),

(70),

(71).

Variable Descriptions Values Source

S(0) Susceptible Individuals 50 Assumed

I(0) Infected Individuals 20 Assumed

V(0) Vaccinated Individuals 10 Assumed

Table 1: State Variables in Model (1) and their Meanings

Parameters Descriptions Values Source

qA Vaccinated Recruited 
Susceptibles 0.45 persons/day-1 Estimated

 α Transmission coecient 1.112 persons/day-1 Estimated

 β Transmission rate 0.213 persons/day-1 Estimated

ρ Vaccinated Susceptibles 0.07 persons/day-1 Estimated

 μ Natural death rate 0.009 persons/day-1 Estimated



Table 2: Parameters in Model (1) and their Meanings

Figure 1: Graph of Optimality system S and I against time(t)

Figure 2: Graph of optimality system of V against time (t)

Figure 3: Graph of S with two controls u1 and u2 against time (t)
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γ Progression rate 0.11 persons/day-1 Estimated

δ Rate at which vaccine wanes 0.03 persons/day-1 Estimated

c Incidence rate 1.431 persons/day-1 Estimated

 θ Disease induced death rate 1.22 persons/day-1 Estimated

Figure 1: Describes the behavior of the solution curve of state variable S and I for time interval [0; 0:12]. The Runge Kutta 4th order 
iterative method is used to solve the state variables forward in time. See [19]

Figure 2: Describes the behavior of the solution curve of state variable V for time interval [0; 3]. The Runge Kutta 4th order 
iterative method is used to solve the state variable V forward in time. See [19]

Figure 3: Presents the impact of the of the two controls on the susceptible individuals. The media coverage control is not effective 
enough because it doesn't tend to zero unlike the treatment control (u2), with high capacity to minimize the number of infectives 
and bring about the absolute eradication of the disease in human host population.

Figure 4: Shows the behavior of the Vaccinated class. The impact of media coverage information control is more felt by making 
more individuals to make themselves readily available for vaccination through information. This brings about the eradication of 
disease in the human host population.
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Figure 4: Graph of V with and without control against time (t)

Figure 4: Graph of λS;λI ; λV against time (t)

Figure 6: Graph of I with and without control against time

Figure 5: Describes the behavior of the adjoint equations λS; λI ; λV . The adjoint equations were solved backward in time using the 
Runge-Kutta 4th order iterative technique. The values of the adjoint tend to zero towards the final time. This implies that the rate 
of change of Hamiltonian H increases with respect to the state variables S, I, V.

Figure 6: Presents the impact of control and absence of control on the infected class. When the treatment control is applied, there 
is a decline, tending to zero, showing that the number of infected individuals is reduced to the barest minimum, thereby leading 
to the total eradication of the disease in the human host population.

In this paper, a deterministic system of differential equation of SIS -V S is presented in order to gain insight into the epidemic 
transmission in human host population and bring about effective optimum strategies for the control of the disease spread. The 
conditions for the optimal control of the disease with media coverage and treatment measures is derived and analyzed, it is 
observed that the media coverage and treatment have a great effect in combating any infectious diseases. Also, the local and 
global analysis is carried out on the model to study the existence and stability of the disease free and endemic equilibrium. When 
R0 < 1, the disease free equilibrium exists and it is both locally and globally stable. Also, if R0 > 1, the endemic equilibrium is 
locally and globally stable. The model considered in this paper can be extended by incorporating time and space thereby changing 
it from ordinary differential equation to partial differential equations. Also, the cost effectiveness of the controls is another area 
that can be effectively analyzed and studied.

Conclusion
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