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Introduction

Abstract
As per the Basel accords (I-III), banks are required to keep a certain amount of capital in reserve to cater for losses resulting from their 
operational loss events. In estimating capital, banks may use any of the three approaches outlined in the Basel II accord; Basic Indicator 
Approach (BIS), The Standardized Approach (TSA) and the Advanced Measurement Approach (AMA). This paper serves to suggest robust 
operational risk capital allocation techniques under the AMA. The quantitative assessment of operational risk here-in is informed by loss 
distributions of a light-heavy tail nature as well under the Peak-Over-Threshold method. Some graphical and empirical goodness-of-fit 
techniques are used in selecting the best distribution for each considered operational loss data set. Simulation studies from all considered 
distributions are carried out to establish as to which goodness-of-fit techniques best fit for what loss distribution. This is an analytical work 
that attempts to fit several theoretical distributions to real banking and financial data and measure the fitting performance by different 
approaches. Two sets of data are considered, one from a Spanish Saving bank and another from a South African retail bank. Operational 
risk capital is calculated based on the allocation of the best-fit distribution for each dataset. The capital charge here-in is estimated as the 
100(1 − α)th percentile (Empirical Value-at-Risk) at level α of the best fit loss distribution.

Keywords: Operational Risk Capital; Advanced Measurement Approach; Loss Distribution Approach; Goodness-of-Fit; Peaks-Over-Threshold; 
SME Bank Namibia

Operational risk is defined as the potential of loss resulting from inadequate or failed internal processes, people and systems or 
from external events [1]. Over the years major operational losses experienced by financial institutions globally has exceeded $100 
million. The $691 million rogue trading loss at All first Financial, the $484 million settlement due to misleading sales prices at 
household finance and the estimated $140 million loss from the 9/11 attack at the Bank of New York just to mention but a few are 
some of the classical global examples.

Locally, there are two prominent banks which draw attention. The City Savings & Investment Bank which collapsed over a decade ago 
as well as the recently liquidated Small and Medium Enterprises (SME) Bank Namibia. In case of the SME Bank, its operational failure 
emanates from nonperforming loans, ghost workers, issues of noncompliance, misappropriation of funds, falsified documentations; 
deceiving and misrepresentation of information to the regulator among other irregularities [2]. To safeguard the stability of banks, the 
Basel Committee on Banking Supervision (BCBS) outlined three methods for reserving risk capital. The three are; the Basic Indicator 
Approach (BIS), the Standardized Approach (TSA), and the Advanced Measurement Approaches (AMA).

For synthesis, we briefly discuss these three approaches. Under the BIS approach, operational risk (KBIA) is calculated as the simple 
average over the previous three years of a fixed percentage (α) of positive annual gross income (GI), where α is fixed at 15% which 
according to [1] relates to an industry wide level of required capital.

Under the TSA, banking activities are sub-divided into eight business lines: corporate finance, trading & sales, retail banking, 
commercial banking, payment & settlement, agency services, asset management, and retail brokerage. Within each business line, GI 
is used as a proxy for operational risk exposure. The capital charge for each business line is calculated by multiplying GI by a factor βi 
assigned to each business line.
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However, under the AMA capital is estimated from the bank’s actual internal operational loss data using its own internal rating model. A 
bank intending to use the AMA should therefore demonstrate the accuracy of its’ internal model(s) in assessing risk within the different 
business lines within that specific bank. Furthermore, the bank should also meet the following criterions; use its own internal loss data, 
or supplemented by relevant external data rescaled to reflect its actual exposure, use scenarios/stress testing’s techniques and any other 
factors reflecting the actual operations. Moreover, the measures of risk relevant for estimating risk capital should correspond to the 
99.9% confidence level of exposure for a one-year holding period. The intention of AMA is to provide incentives to banks to invest into 
development of sound operational risk practices and risk management methodologies. According to [3] the capital reserve under AMA 
(when compared to other approaches) is more relevant in reflecting the actual risk profile of the bank. Under the loss distribution approach 
which falls under the AMA, banks estimate for each business line/risk type combination, the probability distribution functions of the single 
event impact and the event frequency for the next (one) year holding period using its own internal data [4].

As a requirement per the Basel accords, capital charge is defined at the 99.9% percentile of the total loss distribution less the expected 
losses or 99.9% percentile of the total loss distribution where only above the threshold losses are considered. The loss distribution 
approach relies on historical loss data in order to accurately estimate a reliable capital charge. Since not all operational losses are 
publicly reported by banks, it is very difficult to effectively model bank operational loss data. Also, a majority of existing operational 
risk databases are heavy populated with high frequency, low severity losses and only a very few high severity losses are featured 
in those databases. These among other factors greatly contribute to the use of top-down approaches in estimating risk capital. 
According to [1,3] and references there-in, the use of top-down approaches leads under-estimation of capital.

This paper therefore, serves to suggest a robust methodology for estimating operational risk capital charge using the loss distribution 
approach. The rest of the paper is structured as follow; in section 4 we discuss different goodness-of-fit techniques necessary for choosing 
the best loss distribution for the two considered datasets. The goodness-of-fit techniques employed here falls under the two main categories: 
the graphical and empirical goodness- of-fit techniques. Section 4.3 presents a review of properties of different loss distributions well suited 
for modelling loss frequency (arrival processes) as well as those appropriate for modelling the severities of bank operational loss data. 
The section further highlights on procedures for simulating random variates from the considered loss severity distributions. The actual 
application of the approach, simulation studies as well as fitting of real operational loss data and results therein are presented in Section 5. 
All considered distributions were fitted with parameters estimated using the maximum likelihood approach. The summary of results as 
well as conclusions drawn from the study is presented in section 6. To the best of our ability there is no literature suggesting as to which 
goodness-of-fit techniques best fits for what loss distribution and what are the fundamental graphical features of loss data following a loss 
distribution from the light-heavy tailed distribution class. We therefore believe this paper is very fundamental in laying a good foundation 
for further research on operational risk modelling techniques [5-10].

To begin, we briefly discuss contemporary definitions and properties of different techniques followed by different loss distributions 
discussed in the paper.

A very popular measure of risk is the well-known Value-at-Risk (VaR). VaR is a statistical measure of the riskiness of a given portfolio. It is 
defined as the maximum dollar amount ex- pected to be lost over a given time horizon, at a pre-defined confidence level. Mathematically, 
Holton & Glyn [11] defines VaR as follow.

Given a loss random variable  L  and a confidence level (0,1)p∈ , ( )PVaR L   is given by the smallest number l such that, the probability that 
the loss L exceeds l is no larger than 1-p, i.e.

Definition 1: Value-at-Risk

where  ( )LF l   is the probability distribution function for the random variable L .

Materials and Methods

Some Basic Definitions

( ) inf{ : ( ) 1 }PVaR L l P L l p= ∈ > ≤ −

{ :1 ( ) 1 }Linf l F l p= ∈ − ≤ −

(1){ : ( ) },Linf l F l p= ∈ ≤

Definition 2: Quantile-Quantile Plot (QQ-plot)

The QQ-plot, plot empirical quantiles against the quintiles of a hypothesized distribution for the data.

Graphical Goodness-of-Fit Technique
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Definition 3: Mean Excess Plot

If the distribution is chosen correctly, the QQ plot should coincide with the line y = x in the xy-plane. Otherwise, if the data follow 
a heavy tailed distribution the QQ plot would capture it by curving below or above the line y = x.

For a specified high threshold value u, the mean excess function of x is given by

The sample mean excess function is calculated as

In simple terms, the mean excess function calculate the expected value of losses above a given high threshold u. For heavy-tailed data 
e(u) typically tends to infinity with an upward sloping mean excess plot.

Empirical distribution function based tests directly compare the empirical distribution function with the fitted distribution function. 
We start with the popular Kolmogorov-Smirnov test.

Given (Y1, Y2, ...., Yn ) is an ordered set of  N data points, and n(i) is the number of points less than Yi with (Y1, Y2, ...., Yn) ordered 
from smallest to largest. The test statistic is calculated as follow

This test is used to decide if a sample comes from a population with a specific distribution.

The K-S test is based on the empirical distribution function (ECDF)

Definition 4: Kolmogorov-Smirnov (K-S) Test

Definition 5: Anderson-Darling Test

The null hypothesis (that, the data follows the hypothesized distribution with a cumulative distribution function F ) is rejected if the 
test statistic  D is greater than the critical value.

where  F is the theoretical cumulative distribution of the continuous distribution being tested.

The Anderson-Darling test is a modification of the K-S test and gives more weight to the tails of the distribution of the data compared 
to the K-S test [12]. There are two types of Anderson-Darling tests: the supremum type and the quadratic type. The supremum type  
AD statistic with empirical distribution function (EDF) Fn(x) and fitted distribution function F(x) is calculated as

Empirical Distribution Function based Goodness-of-Fit Tests

( ) / ,nE n i N=

( ) [ ],e u x u x u= Ε − > (2)

( )1

1

ˆ ( ) ,
{ }

n
jj

n n
jj

x u
e u

x u
=

=

−
=

>

∑
∑ 

(3)

1

1( ) , ( ) ,i ii N
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− = − − 
 

(4)

(5)
( ) ( ) ,

( )(1 ( ))
n

x

F x F xAD n sup
F x F x

−
=

−

with computing formula

( ) ( )
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1
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The quadratic type AD statistic is calculated as

Since this test puts more weights on tails of distributions, it is important when there is reason to believe that the underlying 
data is heavy-tailed.

Definition 6: Cramer-von Misses Test  (W2)

with computing formula

The Cramer-von Misses test statistic [13] is defined by

with computing formula

Kuiper proposed Vn, an adaptation of the Kolmogorov statistic to test the null hypothesis that a random sample of size N comes from 
a population with given continuous distribution function F(x). If the sample distribution function is FN(x),VN is defined by

Definition 7: Kuiper Test (Vn)

Under the loss distribution approach (LDA) banks are required to quantify two sets of distributions, the loss frequency and loss 
severity distributions for each risk cell (business line/event type combination) over a one-year time horizon. Though the loss 
frequency distributions are important for modelling the arrivals and frequencies of losses, this paper focus on modelling the 
severity of the loss data.

This section therefore present the different methods involved in building robust data driven loss severity models.

One common method for simulating from loss distributions or estimating high quantiles is the inverse transform method.

Quantiles Estimation

2 2( ( ) (X)) (X),nW n F x F dF
+∞

−∞
= −∫

2 2
( ) ( )

1 1

1 (1 2 )
3

n n

j j
j j

nW j z z
n = =

= + − +∑ ∑

( ( ) ( )) ( ( ) ( )).n N N
x x

V sup F x F x inf F x F x
−∞< <∞ −∞< <∞

= − − −

Loss Distributions

Loss Severity Distributions and their Simulations

2
2 ( ( ) ( )) ( ),

( )(1 ( ))
nF x F xAD n dF x

F x F x
+∞

−∞

−
=

−∫ (7)

2
( ) ( )

1 1

1 1(1 2 ) (1 2( )) (1 )
n n

j j
j j

AD n j logz n j log z
n n= =

= − + − − + − −∑ ∑ (8)

Definition 8: Inverse Transform Method

Suppose [ ]( ) : 0,1F x →  is a non-negative and non-decreasing cumulative loss distribution function for a given loss data. The inverse 
transform method involves find a quantile expression for the distribution function F, which is obtained from the generalized inverse

[ ]1(y) : 0,1F − →   of F given by

1(y) { : ( ) }, [0,1]F min x F x y y− = ≥ ∈ (9)

 1(y)F − gives the estimated loss value occuring with a probability [0,1]y∈ . It is however worth mentioning that, one can only use the 
method on condition that  1(y)F −  can be explicitly expressed in a closed form.



J Math Stat Anal                                5

                                                                               Volume 3 | Issue 1
 
ScholArena | www.scholarena.com

                    

Lognormal Distribution
The lognormal distribution is very useful in modelling of claim/loss sizes. It has thick tails, is right skewed and and such fits many 
phenomenon’s with positive supports. It resembles the normal distribution when the standard deviation (σ) is small; it is infinitely 
divisible and closed under power and scale transformations.

where 0σ >  is the scale parameter and µ−∞ < < ∞  is the location parameter. The distribution of y is called lognormal or 
Cobb-Douglass law [14]. The lognormal cdf is given by

For a random variable  x  with normal distribution

Let  y = ex such that  X =logy , then the probability density function of y is given by:

with the mean and variance given by

respectively, with the right tail behavior of the lognormal given by

The inverse transform of the lognormal distribution is given by

2

2

1 1 ( )( ) exp ,
22N

xf x xµ
σπσ

 −
= − −∞ < < ∞ 

 
(10)

2

2

1 1 1 ( )( ) ( ) exp , 0
22N

logyf y f logy y
y

µ
σπσ

 −
= = − > 

 
(11)

( ) , y 0logyF y µ
σ
− = Φ > 

 
(12)

2

( ) exp ,
2

E y σµ
 

= + 
 

(13)

( ) ( )2 2( ) exp 1 exp 2Var y σ µ σ = − +  (14)

( ) 1 .logxF y  = −Φ 
 

(15)

11 ( )( ) uF y e σ µ−− Φ += (16)

for (0,1)p∈ . Therefore, the lognormal distribution with scale parameter μ and location parameter σ  has the following quantile 
function

The lognormal QQ-plot should show a straight line with slope σ̂ and intercept µ̂ . If large magnitude losses are plotting below 
the fitted line, then it is an indication that the data is not well represented by a lognormal distribution, hence a more heavy tailed 
distribution should be considered. For the mean excess function, the lognormal distributed data should yield a mean excess plot 
with an upward sloping curve.

The Weibull is a generalization of the exponential with two parameters instead of one allowing for greater flexibility and heavier 
tails. The density and distribution functions are

Weibull Distribution

(17)

1( ) , 0xf x x e xα β ααβ − −= ≥ (18)

( ) 1 , 0xF x e xβ α−= − ≥ (19)

1 (p)Q(p) e σ µ−Φ +=
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A Weibull QQ-plot has a slope approximately equal to 1
α̂  and intercept ˆlog( )β  . If large magnitude losses plot below the fitted 

line, then Weibull does not make provision for suchlosses and a distribution with heavier tails than the Weibull should be 
considered. On the other hand, a Weibull mean excess plot should give a downward sloping curve.

The Weibull quantile function with scale parameter α and shape parameter β is given by

To generate a Weibull random variate, one first generates an exponential random variable Y with parameter β and then follows 
the transformation 1

( , )X Y α α β=  to obtain Weibull ( , )α β random variate.

Pareto Distribution

Suppose a random variable X, has an exponential distribution with mean 1λ− , and thatλ itself has a gamma distribution 
with parameter α, then the unconditional mixture distribution of x is called the Pareto distribution. The density and 
distribution functions of the Pareto are given by

where  , 0β α ≥   are the scale and shape parameters respectively. The mean and variance of the Weibull are

It's survival function is given by ( ) 1 ( ) xF x F x e
αβ= − =  which makes it heavy-tailed when α≤1.

1 2
21 2 1( ) 1 , ( ) 1 1E x Var xα αβ β

α α α
− −       = Γ + = Γ + −Γ +            

(20)

( ) 1( ) , 0f x x
x

α

α

αλ
λ += >
+

(22)

(21)( )1
( ) (1 ) (0,1)Q p log p pαβ= − − ∈

respectively, where α is the shape parameter λ and the scale parameter. The mean and variance are given as

respectively, where the mean only exists for 1α > and the variance only exists for 2α >  . The inverse of the cdf has a simple 
analytical form

and

If the data follows a Pareto distribution we expect the Pareto QQ-plot to be linear but only in some of the largest observations. The 
mean excess plot for the Pareto should also give an upward sloping curve.

The generalized Pareto distribution can be used for modelling tails events, i.e for data exceeding a certain high threshold. For a 
loss random variable x , if we choose a threshold u, and denote x u−  by exceedances of x over a given threshold u, then the excess 
distribution function is given by

Generalized Pareto Distribution (GPD)

( ) 1 , 0F x x
x

αλ
λ

 = − > + 
(23)

( )
1

E x λ
α

=
−

(24)

( ) ( )

2

2( )
1 2

Var x αλ
α α

=
− −

(25)

( ){ }1
( ) 1 1 , (0,1)Q p p pαλ

−
= − − ∈ (26)
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and the generalized Pareto distribution (GPD) which is the best candidate for modelling such exceedances has distribution function

The inverse of the GPD takes the form 1( ) (1 )F p log pµ β− = − −   for 0ξ = and 1( ) (1 )F p log p ξµ β ξ− −= − − for 0, (0,1)pξ ≠ ∈ The 

quantile expressions for the GPD are given by  

whereby β >0 is the scale parameter, μ the location parameter and ξ  the shape parameter see [4] and reference therein.

1

1 1 0,

,
1 1

x

x if

e if

G
ξ

µ
β

µξ ξ
β

ξ β
ξ

−

−

 −
− + ≠ 
 

− =

= 


(28)

( ) (1 ) for 0Q p log Uµ β ξ= − − = (29)

( ) ( ) ( )
( )

1 ( )u

F x u F u
F x P x u x x u

F u
+ −

= − ≤ > =
−

(27)

whereby U is uniformly distributed on (0,1).
The mean excess function for the GPD is given by

Note that, the mean excess plot is more steeper for heavy tailed data and an upward sloping plot would indicate a Pareto-like 
distribution, while a horizontal plot would indicate an exponential distribution.

which means that for 0<ξ<1 and β+ξu>0 the mean excess plot should have an upward-sloping straight curve.

This approach has come to be known as a Peaks-Over-Thresholds (POT) method.

The optimal threshold  is chosen such that, the mean excess plot is roughly linear for x u≥  . If one uses the empirical distribution 
function for losses below the threshold, then ( )un N n−  losses should fall below the threshold u and Nu losses above it, where n is 
the number of losses observed with a one year period.

Therefore, the Value-at-Risk estimate under the GPD method, tis given by

for 0ξ ≠Q(p) (1 )log U ξµ β ξ−= − − (30)

(31)

(32)

and

Before fitting the distributions to the two considered sets of operational loss data, we carried out simulation studies on all 
considered loss distributions. Thereafter we tested all simulations for goodness-of-fit using different goodness-of-fit techniques 
discussed in the previous section. The simulations were carried out using the inverse transformation of the respective distribution 
functions. After establishing which goodness-of-fit test best fit for what distribution, we fitted all considered distributions to the 
actual observed operational loss data. The parameters in the fitted distributions were estimated using the maximum likelihood 
method as it provided consistent unbiased estimates as compared to the least square method. The data under consideration 
consists of two datasets. One provided by a medium-sized Spanish savings bank and another one from a South African retail 
bank. The choice of the data was solemnly based on the availability. All datasets consist of daily observations captured with 
reference to the date of occurrence. However, this study used monthly aggregated observations. The Spanish losses were 
captured in Euros (€) while South African ones in Rands (R). In the subsequent subsections we will first discuss the Spanish 
data and then the South African one.

Results and Discussion

( ) ,
1 1

e u uβ ξ
ξ ξ

= +
− −

ˆ

1

ˆˆ 1 .ˆ (1 )
uNVaR u

n

ξ

α
β

αξ−

   = − −   −  
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The Spanish data represent losses incurred by a medium sized Spanish Savings Bank and were obtained from [15].

Spanish Savings Bank Data

Figure 1: Spanish savings bank data histogram and mean excess plot

From the histogram in Figure 1, we see that, most losses are of low magnitude, ranging between €50,000 and €200,000. 
While an extreme loss event of magnitude over €550,000 can be observed far in the right-tail of the histogram, operational 
losses such as this one are often of an unexpected nature and as such they may cause modelling challenges, since often 
they tend to be differently distributed than the rest of the dataset. The mean excess plot form a constant function for losses 
between €50,000 and €150,000, feature of exponential data. However, beyond €150,000 the excess function is increasing, 
and this is a typical feature of heavy tailed data. It is therefore evident that, the tail distribution of this dataset is different 
from the distribution in the body. Hence the need to consider light-to-heavy tailed distributions in quantifying high 
quantiles of the data.

The lognormal fits fairly well to the data with the best goodness-of-fit provided by the Cramer-von Misses test with a test statistic 
of 0.032267 at 5% significance level. The first figure in Figure 2 indicates that there is a fairly good fit between the empirical cdf 
and the fitted lognormal cdf. The QQ-plot on the right hand side of Figure 2 corresponds well with a typical lognormal QQ-plot 
as discussed in the previous section (see section 4.3.2). Results here therefore suggest that, indeed the lognormal distribution does 
provide a fairly good fit to the Spanish data.

Lognormal Fit

Observing the Figure 3 below, we see that, the Cramer-von Misses test with a test statistic of 0.152 indicates a good Weibull fit 
for the data. Furthermore, the QQ-plot herein also seems to suggest that the Weibull distribution underestimates some of the 
high quantiles. These are an indication that, the Weibull distribution is not the best distribution to consider as we look to avoid 
underestimating capital.

Weibull Fit

Figure 2: Lognormal fit and QQ-plot to Spanish savings bank data
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Figure 3: Weibull fit and QQ-plot to Spanish savings bank data

Figure 4: Pareto fit and QQ-plot to Spanish savings bank data

We established from the random variates simulation that the Kuiper V test gives the best Pareto fit with the lowest test statistic. We see here 
that the Kuiper test accepts H0 giving a good Pareto fit but we observe from the Figure 4 that though that is the case, it is not an optimally good 
fit. This can be because of the size of our data set and the Pareto being heavy-tailed works fairly well with data exceeding high thresholds. We 
observe from the QQ-plot that the Pareto is overestimating lower quantiles and underestimating the higher quantiles of the data.

Pareto Fit

Figure 5: Value-at-Risk for Spanish Savings Bank data

We now look at the Value-at-Risk (VaR) given by the three distributions fitted above. The graph below shows all three distributions 
and how they compare with each other based on the VaR they estimate.

Value-at-Risk
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We have on the Y axis the estimated Value-at-Risk and on the X axis the confidence interval. We observed form fitting the data to the 
distributions that, the lognormal fits better to our data as compared to the other two distributions. We also observe from Figure 5 that, the 
lognormal and the Pareto distributions do not give a 99.9% quantile estimation for the Value-at-Risk, but we do observe an estimation of 
the Value-at-Risk given at €557100.00 by the lognormal and Pareto distributions at 99.8% and 99.7% confidence levels respectively. This 
means that, if we consider the lognormal estimation, we are 99.8% confident that at any given point in time, our losses would not exceed 
€557100.00, and 99.7% confident it would not exceed the same amount under the Pareto distribution. However, we obtained a 99.9% VaR 
estimation of €557100.00 using the Weibull distribution. Having estimated the 99.9% quantile with the Weibull and having reached the 
same estimation with the lognormal which fits best to our data sooner, we can conclude that €557100 is the amount of capital the Spanish 
Savings bank has to put aside to cater for operational losses. We do however consider the fact that, these distributions fit well to the body of 
the data but not soo well to the tail, as such, extreme losses are not well captured using the above distributions.

Figure 6: Histogram and mean excess plot of SA retail bank

The second dataset from a South African retail bank was obtained from [16]. Similarly we briefly study the basic properties of the data.

South African Retail Bank Data

From the histogram in Figure 6, similar to the Spanish data, and as in literature [15] we observe that, a majority of losses have low 
severity, with a huge volume of the losses of magnitude less than R500,000.00. We also observe some heavy-tail behaviours, with 
some extreme losses ranging between R5 million and R6 million and a very extreme observation with magnitude over R9 million. 
The mean excess plot of the data shows a somewhat slower increasing function in the low magnitude area which increases more 
rapidly past the R 270,000.00 threshold depicting that our data follows a heavy-tailed distribution.

Lognormal Fit

Figure 7: Lognormal fit to SA retail bank data

As in the case of the Spanish savings bank’s data considered earlier, the lognormal provides a very good fit to the data, though not 
as a good-fit as with the Spanish bank’s data. The Cramer-von Misses test accepts the lognormal distribution with the smallest test 
statistic of W2 = 0.63021. However the AD and KS tests rejected the lognormal fit. Graphically, the QQ-plot on the right of Figure 
7 shows a reasonably good lognormal fit to the data, though there are still some data points not corresponding with the fitted line. 
Therefore, a more heavier-tailed distribution may be an appropriate candidate for this dataset.
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Compared to the Lognormal distribution in Figure 7, Figure 8 indicates that, the Weibull distribution fits the data better, with the 
best best statistic provided by the Kuiper-statistic V. This is well in accordance with results obtain from the simulation study in 
accepts our Weibull fit with a test statistic of V = 0.61875, but was however not the smallest statistic with the Cramer-von Misses 
test giving the best test statistic at W2 = 0.37674. We see further from the QQ-plot on the right that for higher quantiles we tend to 
have a good fit for the Weibull but we do have some data points plotting bellow the fitted line. The Weibull fits well but not for all 
the data as we still have a significant amount of data points deviating from the fitted Weibull distribution [17].

Weibull Fit

Figure 8: Weibull fit to SA retail bank data

For the Pareto distribution in Figure 9, the Kuiper V test gives a good Pareto fit though the Cramer-von Misses test overall is the 
best with a smallest value of W2 = 0.33482. We further observe from the QQ-plot a considerable number of the extreme values 
plotting away from the fitted line, hence suggesting for a distribution much heavier than the fitted Pareto distribution.

Pareto Fit

Figure 9: Pareto fit to SA retail bank data

We have on the graph below the Value-at-Risk estimations for the South African Retail Bank’s data for each of the fitted loss distributions
Value-at-Risk

Figure 10: Value-at-Risk for South African Retail Bank data
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The Value-at-Risk estimates in Figure 10 shows that the Pareto distribution provides the best estimates compared to the other 
two loss distributions. We observe the 99.8%VaR from the Pareto estimated at R 9,669,000.00, meaning we are 99.8% confident 
that no loss will exceed this amount. Whereas, the Weibull give a 99.9% quantile estimate of the Value- at-Risk at R 5,380,000.00. 
The lognormal estimates the 99.7% Value-at-Risk at R 9,669,000.00. We also observe here that, the Weibull estimate is much 
lower than those of the other two considered loss distributions. These implies that the Weibull distribution does not well capture 
extreme losses. Further investigation is needed for us to obtain a much better estimate of the VaR for this data set using the POT 
method. Should we consider the Pareto distribution which fitted best to the data, we would expect the SA Retail Bank to set aside 
R 9,669,000.00 as their operational risk capital charge [18].

The optimal high thresholds u as previously discussed in section 4.3.5 is chosen at a point where the mean excess plot is roughly 
linear for x ≥ u.

The peaks over threshold (POT) method is used in modelling losses beyond high thresholds, in order to capture the effects of 
extreme losses/event on the estimation of VaR and many other risk measures. From the mean excess plots in Figures 1 & 4 we 
observe that, due to the presence of extreme losses, the tails and the body of the two datasets are independently distributed. As 
such, in the following subsection we analyze our datasets using the POT method.

Peaks-Over-Threshold

Looking at the mean excess plot of the Spanish savings bank’s data in Figure 1, we choose a threshold u= €150000, since we see 
that the distribution of our data past that threshold tends to be different from data bellow that point. We fit the data exceeding this 
point to the Generalized Pareto distribution (GPD) and analyse the fit (Figure 11).

Figure 11: Peaks over threshold of Spanish savings bank’s data

Peaks over Threshold for Spanish Savings Bank’s Data

We observe from the empirical fit that the data fits well to the GPD with all the considered goodness-of-fit tests accepting fit. The 
Cramer-von Misses test gave the smallest and best fit with a test statistic of W2 = 044205. On the right-hand side, the QQ-plot 
indicates that, the GPD does provide a good fit to the data with all data points plotting along the fitted line.

Figure 12: POT Value-at-Risk for Spanish Savings Bank data
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Figure 12 indicates that at 97.4% confidence level, we are confident that no extreme losses beyond €150,000.00 incurred by the 
Spanish bank will exceed €407,100.00 had been breached. Thus due to the POT estimate the bank should set aside this amount 
to cater for extreme losses. This high severity low frequency loss capital charge along with the low severity high frequency capital 
charge estimated earlier, the bank should be in a good position to cover itself from operational loss on all fronts [19].

We observe the mean excess plot of the SA retail bank’s data in Figure 5 and choose a threshold u =R280,000 and fit the exceedances 
to the GPD (Figure 13).

Figure 13: Peaks over threshold of SA retail bank’s data

Peaks over Threshold of SA Retail Bank’s Data

We see from the empirical fit, the GPD fits well to our data but deviates from it later, and we also see that the KS test rejected our 
fit. We do however get a good fit from our other three tests with the Cramer-von Misses test giving the smallest and best test with 
a test statistic of W2 = 0.061111. We see from the QQ-plot on the right that the data plots well along the fitted line, but we do see it 
deviate from the line as well. Overall we do have a good fit but the slight deviations can be accounted to the threshold chosen. We 
now look at the Value-at-Risk as estimated by the GPD under the POT (Figure 14).

Figure 14: POT Value-at-Risk for SA Retail Bank data

Conclusion
In this paper a Weibull(α, β), Pareto(α, β) and a longnormal(µ,σ) distributions with different parameterizations were fitted to 
two sets of real bank operational loss data one from a Spanish Saving bank and the other from a South African retail bank. Two 
graphical goodness-of-fit techniques, namely; the mean-excess plot and the quantile plots were used in judging whether a given 
distribution does fairly fit the data. To supplement the graphical goodness-of-fit test results, we used four common empirical 
distribution based goodness-of-fit tests, namely: the Kolmogorov-Smirnov, Cramer-von Misses, Anderson-Darling and the Kuiper 
test for goodness-of-fit to further asses the fitness of the hypothesized distribution on the data. Results from the simulation study 
suggest that, the Cramer-von Misses test provides the best fitness test statistic for the Lognormal and Weibull distribution. While 
the Kuiper test is best suited for judging the fitness in Pareto distribution.

We observe the 96.6% Value-at-Risk estimate at R9,389 000. Thus the bank should set aside this much to cater for extreme loss events exceeding 
the threshold chosen given that that threshold has been exceeded. Considering the Pareto estimate for low severity losses since the Pareto fit 
best to this data set together with this estimate for extreme events the bank is able to establish good cover for operational loss events of all types.
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As a remedial approach, we further fitted a more heavy-tailed distribution (the Generalised Pareto) to both dataset and re-asses its 
fitness to both datasets. For each dataset a new capital was estimated. With the Spanish data, the GPD obtained a capital estimate 
of €407 100.00 at a 97.4%, while with the South African data an estimate of R9,389 000.00 at a 96.6% confidence level. In both case, 
high threshold values (u) of €150 000.00 and R =28000.00 as suggested by the mean excess function were used respectively. To this 
end, this paper therefore serves to suggest key fundamental techniques and procedures required in designing robust and effective  
operational risk capital allocation models. The authors believe the paper will greatly aid regulators and banks in emerging markets 
in effectively implementing the AMA as recommended in the Basel II accord.

After documenting which goodness-of-fit test best fit for what distribution all three considered loss distributions were fitted to the 
two datasets using the maximum likelihood method to estimate the parameters. The best fit distribution for each dataset was used 
to estimate the amount of capital that is needed for each bank to capitalize its exposure to operational risk. For the Spanish data, 
the Lognormal distribution provided the best fit and yielded a minimum capital estimation of €557 100.00 at a 99.8% confidence 
level. However, for the South African data, the Pareto distribution provided the best fit and yielded a minimum capital estimation 
of R9,669 000.00 at a 99.8% confidence level. It is worth noting that, in both cases none of the best fit distribution could achieve the 
99.9% VaR as recommended in Basel II. Equally important, it is worth mentioning that, though the two best fit distributions, i.e. 
Lognormal and Pareto provided superior fitness to the two datasets respectively, their QQ-plots to some extend suggested evidence 
of under-fitting.

The authors would like thank anonymous reviewers for critically reading the manuscript and for suggesting substantial 
improvements on it.
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