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Abstract

Proton Exchange Membrane Fuel Cells (PEMFCs) are vital components of sustainable energy systems due to their high e�-
ciency and environmentally friendly energy conversion. However, the complex nonlinear behavior of PEMFC models pre-
sents signi�cant challenges for parameter estimation, a�ecting both operational reliability and longevity. �is study intro-
duces the Aurora-Inspired Optimization (AIO) algorithm, which leverages principles derived from auroral phenomena to
enhance parameter estimation accuracy. AIO employs aurora gyration motion for re�ned local search and aurora oval walk
for e�cient global exploration, ensuring an optimal balance between exploration and exploitation. �e algorithm's e�ective-
ness  is  benchmarked  against  established  optimization  methods—including  GSA,  DE,  PSO,  MFO,  ACOR,  MVO,  WOA,
SCA, and JAYA—across six PEMFC models: BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard Mark V,
and  STD  250  W  Stack.  Results  demonstrate  that  AIO  surpasses  competing  algorithms  by  achieving  the  lowest  Sum  of
Squared  Errors  (SSE)  and  the  fastest  convergence  rates.  Speci�cally,  SSE  values  of  0.025493  for  the  BCS  500  W  model,
0.275211 for the Nedstack 600 W PS6, and 0.283774 for the STD 250 W Stack are observed, alongside minimal Absolute Er-
ror (AE) and Relative Error (RE%),  such as  AE = 0.259293 and RE% = 1.185075 for the STD 250 W Stack.  Additionally,
AIO consistently stabilizes within 50 iterations across all test cases and achieves the highest Friedman Ranking score of 1.
�ese �ndings highlight the potential of AIO to signi�cantly enhance predictive accuracy, operational reliability, and ener-
gy output in PEMFC systems, establishing it as a powerful tool for fuel cell optimization. Faster convergence and lower run-
time are critical in real-time control and adaptive systems, where quick parameter tuning enhances system responsiveness
and energy e�ciency, particularly in dynamic environments such as electric vehicles or grid-connected fuel cells.

Keywords: Metaheuristic Optimization; Parameter Estimation; Polar Lights Optimization (PLO); Proton Exchange Mem-
brane Fuel Cells (PEMFCs); Sum of Squared Errors (SSE)
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Introduction

In disciplines such as engineering and economics, optimization and intelligent algorithms play a pivotal role in enhancing mod-
el performance and accuracy. In recent years, there has been a growing integration of deep learning techniques with optimiza-
tion methods to address complex problem domains. �is synergy facilitates the development of precise and e�cient solutions
that o�en surpass the capabilities of conventional approaches. For example, deep learning models have proven e�ective in do-
mains such as sentiment analysis, structural health monitoring, and medical diagnostics.

Despite these advancements, certain �elds—particularly energy systems—present distinct challenges that necessitate the devel-
opment of novel methodological approaches. Proton Exchange Membrane Fuel Cells (PEMFCs), a promising form of fuel cell
technology, have emerged as sustainable energy solutions within this context. Due to their high e�ciency and environmentally
friendly  operation,  PEMFCs are  particularly  suitable  for  renewable  energy  applications.  However,  accurately  modeling  these
systems and estimating their parameters remain signi�cant challenges, primarily due to their nonlinear behavior and multivari-
able interactions. Optimal performance, accurate lifespan prediction, and operational reliability of PEMFCs hinge on the pre-
cise estimation of their parameters.

�e global push toward decarbonization has accelerated the adoption of fuel cells, including PEMFCs, in the power generation
and transportation sectors. �eir high e�ciency, zero-emission operation, and potential to replace fossil fuels in heavy-duty ap-
plications—such as trucking and maritime transport—make them especially appealing. Nonetheless, several critical challenges
hinder their widespread deployment:

1. Complex Modeling Requirements: PEMFCs exhibit nonlinear interdependencies among chemical, thermal, and electrical
processes, complicating accurate modeling and optimization.

2. Parameter Estimation Di�culties:  �e seven essential parameters that govern PEMFC performance are typically not dis-
closed in manufacturers’ speci�cations, necessitating empirical optimization techniques.

3. Lifespan and Reliability Issues: Performance degradation over time highlights the importance of developing accurate and
predictive models to ensure long-term reliability. Overcoming these challenges requires the implementation of robust optimiza-
tion algorithms that can e�ectively manage the trade-o� between local exploitation and global exploration, while ensuring con-
vergence to globally optimal solutions.

Previous Work and Contributions

Over the past decade, numerous optimization algorithms have been explored for enhancing the modeling and parameter esti-
mation  of  Proton  Exchange  Membrane  Fuel  Cells  (PEMFCs).  Metaheuristic  approaches,  such  as  Whale  Optimization  [2],
Chicken Swarm Optimization [12], Slime Mold Algorithm [13], and Bald Eagle Search [14], have shown potential in nonlinear
systems but o�en lack dynamic validation or scalability. Extensions speci�c to PEMFCs—e.g., di�erential evolution [7], multi-
-objective models [6], and hybrid techniques [20]—have improved estimation accuracy but frequently omit real-world deploy-
ment or long-term degradation e�ects.

Studies focusing on system behavior and modeling—such as adaptive control [15], environmental variability [8], and dynamic
estimation frameworks [21,30]—have addressed isolated aspects but seldom o�er a comprehensive solution. Others have pro-
posed neural networks [37], advanced controllers [22], and algorithmic re�nements [23,24], yet many approaches su�er from
premature convergence, inadequate exploration, or computational ine�ciency. Additionally, practical frameworks [1,28] and
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real-time strategies [29,31] remain underexplored in dynamic, scalable applications.

Despite substantial progress, key challenges persist: weak adaptability to dynamic conditions, insu�cient real-world validation,
and limited exploration–exploitation balance during optimization. �ese limitations hinder robust, scalable modeling essential
for reliable PEMFC integration into smart energy systems.

To address these gaps,  this  study introduces the Polar Lights Optimization (PLO) algorithm—an innovative,  nature-inspired
framework designed for precise, e�cient, and scalable PEMFC parameter estimation. �e key contributions are as follows:

1.  Novel  Algorithmic  Design:  PLO  mimics  auroral  dynamics  via  gyration  motion  (local  exploitation)  and  aurora  oval  walk
(global exploration), achieving balanced, adaptive optimization.

2. Robust Validation: �e algorithm is tested across six distinct PEMFC models, demonstrating wide applicability and model
versatility.

3. Superior Performance: Benchmarking against nine leading algorithms con�rms PLO’s advantage in convergence speed, mod-
eling precision, and error minimization.

4. Real-World Relevance: PLO’s outputs enhance I-V curve alignment, support real-time modeling, and promote scalable de-
ployment in renewable energy systems.

5.  Strategic  Impact:  By  bridging  theoretical  advancements  with  practical  applicability,  this  work  advances  the  integration  of
PEMFCs in future-ready energy infrastructures.

�e remainder of the paper is organized as follows

Motivation for Aurora Dynamics in PEMFC Optimization

PEMFCs are a type of fuel cell that convert chemical energy directly into electrical energy through an electrochemical reaction
between hydrogen and oxygen. �ey operate at low temperatures (typically below 100°C), are compact, e�cient, and emit only
water as a byproduct,  making them well-suited for portable,  stationary, and vehicular applications.  �e dynamic behavior of
Aurora phenomena—characterized by gyration motion (localized turbulence) and oval walking (global path following)—mir-
rors the complexity of PEMFC parameter spaces, which are highly nonlinear and exhibit multiple local optima. �ese natural
dynamics o�er an intuitive framework for balancing exploration (searching broadly across the solution space) and exploitation
(re�ning known good regions).

As a result,  aurora-inspired motion provides a powerful analogy and mechanism for navigating the rugged parameter lands-
cape of PEMFCs, making it particularly well-suited for robust, adaptive parameter estimation.

PEMFC Mathematical Modelling

Basic Concept of PEMFC

A Proton Exchange Membrane Fuel Cell (PEMFC) consists of two electrodes—the anode and the cathode—separated by a pro-
ton-conducting membrane, which serves as the polymer electrolyte.
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Figure 1: Schematic Diagram for Fuel Cell

�is con�guration allows protons to pass through the membrane while preventing electron �ow, ensuring the proper function-
ing of the electrochemical process [36]. Catalyst layers are placed between the electrolyte membrane and both electrodes to ac-
celerate chemical reactions.

At the anode, hydrogen gas undergoes dissociation at the catalyst layer, splitting into protons and electrons. �e protons mi-
grate through the membrane toward the cathode, while the electrons travel through an external circuit, generating electricity. Si-
multaneously,  oxygen (or air)  is  supplied to the cathode,  where it  reacts  with the incoming protons and returning electrons,
forming water. �e fundamental electrochemical reactions occurring in PEMFCs are:

Anode reaction (1) and Cathode reaction (2)

Overall reaction:

In  the  overall  reaction,  “Energy”  represents  the  electrical  power  generated  as  electrons  �ow  from  the  anode  to  the  cathode
through the external circuit. �e equivalent electrical circuit for a PEMFC stack is depicted in Figure 2.
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Figure 2: PEMFC Equivalent Circuit

Mathematical Model of PEMFC Stacks

�e voltage output of a single fuel cell, denoted as Vcell, can be expressed using the following equation:

Where, Enerst Vact accounts for activation loss-

es, which occur due to the energy required for electrochemical reactions, ΔVohm represents the ohmic losses, arising from resis-

tance in the membrane and electrical pathways, and ΔVcon corresponds to concentration losses, which result from limitations in
mass transport as the reactants are consumed. A fuel cell stack, which consists of multiple fuel cells connected in series to in-
crease the voltage, has an overall stack voltage de�ned by:

Open-Circuit Voltage (Reversible Potential) Calculation

Here, Ncells Vcell is the output voltage for each individual fuel cell, as de-
rived from Equation (4).

�e reversible potential, Enerst, is calculated as follows [11, 12]:

Where Tfc is the cell absolute operating temperature in Kelvin, while PH2
P02

 and denote the partial pressures of hydrogen and

oxygen in the fuel cell stack input channels (atm). When hydrogen and air serve as the inputs, the partial oxygen pressure,  ,
is determined as follows [13, 14]:

Here Pc represents the inlet channel pressure at the cathode (atm), RHc is the cathode electrode relative humidity, Ifc is the oper-
 is the water vapor pressure at saturation, de�ned by [15]:

 is calculated as follows [15]:

 

P02

0.291 0.832Ifc

A /Tfc
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In both cases, the partial hydrogen pressure  is given by:

 

Where P

, , and 4

a is the anode electrode inlet channel pressure (atm), and RHa represents the relative humidity on the anode side.

�e activation voltage drop ΔVact for the electrodes is calculated by:

Where    are empirical coe�cients, while            denotes the oxygen concentration at the cathode (mol/cm3) as follows: 

�e ohmic overpotential, Δ  Vohm accounts for resistance within the fuel cell and is calculated using:

RM is the membrane resistance (Ω) and RC is the resistance due to proton movement through the membrane. Membrane resis-
tance is calculated as:

Where  represents speci�c membrane resistance (Ω·cm), representing membrane thickness (cm), and the empirical formula
for  given as:

�e concentration voltage drop, ΔVcon, is determined by:

Where b is a �tting parameter (V); J and Jmax are the operating current density and maximum current density (A/cm2), respec-
tively.

To ensure accurate modeling and simulation seven unknown parameters ( ) must be estimated. �e proposed
Polar Lights Optimization (PLO) algorithm is employed to optimize these parameters for improved PEMFC performance and
accuracy.

Objective Function

To ensure the modeled PEMFC output aligns closely with empirical data, the optimization problem is formulated by minimiz-
ing the Sum of Squared Errors (SSE) between the experimentally recorded stack voltages and the model-predicted values, using
the following expression [16, 17]:

Where: x is the vector of unknown parameters to be optimized, N denotes the total number of data points, i is the iteration in-

PH2

is an adjustable parameter connected to membrane preparation.



7 Journal of Nanoscience and Nanotechnology Applications

ScholArena | www.scholarena.com Volume 9 | Issue 1

dex, vmeas and vcal represent the measured and calculated voltages. �e optimization process is subject to the following boundary
constraints:

 

 

Where i, min and i, max de�ne permissible ranges for the empirical coe�cients, R C,min and RC,max are resistance bounds, and , 

bmin, and bmax de�ne the limits for water content and parametric coe�cients. �e Mean Bias Error (MBE) is employed as an
additional performance metric, calculated as:

PLO Algorithm Methodology

�is section elaborates the Polar Lights Optimization (PLO) algorithm, an optimization strategy inspired by the movement pat-
terns of high-energy charged particles in�uenced by the Earth’s magnetic �eld, as observed in the aurora borealis phenomenon.
�e section  presents  the  mathematical  foundations,  pseudo-code,  and  a  �owchart,  along  with  an  analysis  of  the  algorithm’s
time complexity.

Mathematical Model of the PLO

�e aurora borealis, resulting from solar-charged particles interacting with the Earth’s magnetic �eld and atmosphere, provides
the conceptual basis for the PLO. �e algorithm captures the dynamic interactions between particles, magnetic �elds, and atmo-
spheric  conditions,  simulating  behaviors  such  as  spiraling  motion,  particle  collisions,  and  eventual  convergence  towards  the
poles [34, 35].

Initialization Phase

�e algorithm begins by generating an initial population of candidate solutions using a uniform pseudo-random distribution.
�is process is represented by:

�e Where:

• N is the number of candidate solutions,

• D is the number of dimensions in the solution space,

• LB and UB represent the lower and upper bounds of the variables, respectively,

• R is a matrix of random values within [0, 1].

�e aurora-inspired dynamics are implemented via two key mechanisms: gyration motion (local exploitation) and oval walk
(global exploration). Gyration simulates local turbulence by perturbing the current solution based on nearby particle interac-
tions.  �ese two steps are alternated or adaptively combined during each iteration to ensure a balance between convergence
(via gyration) and diversity (via oval walking).To simulate aurora-inspired motion, the PLO algorithm incorporates two main
update mechanisms:
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Gyration Motion (Local Exploitation)

�e gyration behavior of charged particles in a magnetic �eld, driven by the Lorentz force, forms the foundation of this phase.
�e Lorentz force experienced by a particle with charge q, velocity v, and magnetic �eld strength B, is given by:

According to Newton’s second law;

Upon rearranging and integrating two sides, the following equation is derived, which explains the law governing the particle ve-
locity in the magnetic �eld:

�e velocity relationship, integrated over time and the initial velocity 0, is expressed as:

�e solution to this equation is given as:

Exponential conversion would be:

Upon solving and integrating, the particle velocity is presented as:

�e re�ned equation enhances the model’s �delity by integrating the e�ects of atmospheric damping, thereby improving its ac-
curacy in simulating particle dynamics. �is modi�cation results in a nonhomogeneous �rst-order linear di�erential equation.

By applying the method of variation of constants, a trial solution of the form v= Cet is assumed, where C and are constants to be
determined. Substituting into the di�erential equation yields:

�us, the expression for is obtained as =(qB-α)/m the general solution for the particle velocity over time becomes:

Here, C represents the constant of integration, and the parameters q, m, and B correspond to the charge carried by the particle,

its mass, and the Earth magnetic �eld strength, respectively. For simplicity, the values of C, q, and B are set to 1, while m is as-
signed a value of 100. �e damping factor α is treated as a random variable within the range [1,1.5]. �e �tness evaluation pro-
cess of the algorithm is utilized to simulate the temporal behavior (t) of Eq. (31).

�e PLO algorithm captures a range of realistic gyration e�ects, including:

• Spiraling trajectories around magnetic �eld lines,

• Velocity attenuation due to environmental damping,

• Gradual convergence toward Polar Regions, which promotes focused local search and enhances the algorithm’s exploitation
capabilities.

(28)

(29)

(30)

(31)

To account for atmospheric damping, a damping factor α modi�es the velocity equation:
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�is mechanism allows the algorithm to re�ne solutions near the current best candidate, mimicking the localized turbulence of
auroras:

Where:

 is the position of the i-th candidate solution at iteration t

 is the best-known solution at iteration t

α is a learning rate or step-size parameter

•�is promotes local search around the best solution

Aurora Oval Walk (Global Exploitation)

�e Aurora  Oval  Walk  mechanism enhances  the  exploration capabilities  of  the  optimization algorithm,  drawing inspiration
from the elliptical patterns formed by auroras under the in�uence of geomagnetic and atmospheric dynamics. To model this
process, the Levy Flight (LF) approach—widely utilized in metaheuristics—is employed. �is technique is particularly e�ective
due to its ability to perform non-Gaussian, stochastic jumps, which aids in traversing the global solution space. �e statistical
formulation of LF is given by (32) and (33):

In this equation, X j is the center-of-mass of the population, X {i, j} represents the current particle position, LB and UB denote
the lower and upper bounds of the search space, and r_1 is a random value in the interval [0,  1].  �e center-of-mass,  which
guides global positioning, is computed as:

�is �e Aurora Oval Walk mechanism strategically integrates Levy Flight to balance exploration and exploitation. While gyra-
tion motion is dedicated to re�ned local search, the aurora oval walk facilitates broader global search. �is dual mechanism en-
hances the algorithm’s capacity to both discover promising solution regions and �nely tune solutions therein.

�e integration of Levy Flight into the Polar Lights Optimization (PLO) framework is a deliberate strategy to improve global ex-
ploration e�ciency. Owing to its heavy-tailed distribution, LF enables the algorithm to make substantial leaps across the solu-
tion space, thereby helping avoid premature convergence to local optima and enabling the identi�cation of multiple optimal re-
gions.  However,  the  e�ectiveness  of  LF  is  contingent  upon  its  statistical  compatibility  with  the  spatial  complexity  of  the
problem  domain.

In the context of PEMFC (Proton Exchange Membrane Fuel Cell) parameter estimation, the search space is inherently nonlin-
ear, featuring numerous local optima and complex interdependencies among parameters. �e use of LF within the PLO algo-
rithm e�ectively addresses these challenges by leveraging its capability to explore high-dimensional, rugged landscapes through
sporadic long-distance moves. �e combination of LF and gyration motion ensures a dynamic equilibrium between explora-
tion and exploitation throughout the optimization process.

Empirical evaluations across six di�erent PEMFC models validate the e�cacy of LF within the PLO framework. Results indi-

(32)

(33)

(34)
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cate  superior  performance in terms of  sum of  squared errors  (SSE),  along with enhanced convergence speed and robustness
when  compared  to  other  contemporary  optimization  techniques.  �is  con�rms  that  the  statistical  properties  of  LF  are  wel-
l-aligned with the structural characteristics of the PEMFC parameter estimation problem. To adaptively guide the optimization
trajectory,  PLO employs  two  weights—W_1 and  W_2—which  are  dynamically  adjusted  over  the  course  of  iterations.  �ese
weights regulate the in�uence of the local (gyration motion) and global (LF-based aurora oval walk) search mechanisms. �e
composite update rule for generating a new solution is given in Eq. (35):

r2 1 2,
calculated using Eqs. (36) and (37), are computed as follows:

Here, t denotes the current iteration number, and T is the maximum number of iterations. As iterations progress, W 1 increas-
es  to  favor  local  exploitation,  while  W  2  decreases  to  prioritize  global  exploration  in  the  early  search  phase.  �is  dynamic
weighting scheme allows the algorithm to e�ciently navigate the solution space without requiring prior assumptions about the
problem topology.

To mimic the elliptical motion of charged particles in auroras and ensure exploration of the global search space:

Where:

 is the mean position of all current solutions at iteration t

β is a scaling parameter controlling the exploration strength

r2 ~ N(0,1) is a normally distributed random number

�is encourages diversi�ed exploration across the solution space

In conclusion, the incorporation of Levy Flight within the PLO algorithm proves instrumental in exploring the complex, nonlin-
ear,  and high-dimensional  solution space characteristic of  PEMFC parameter estimation. Experimental  outcomes a�rm that
the statistical features of LF are ideally suited to the domain’s spatial requirements, leading to more robust and accurate opti-
mization performance. Future research could explore the scalability of this approach in larger multi-component systems and as-
sess its transferability to domains with similar spatial properties.

Particle Collision

To e�ectively address the challenge of local optima entrapment, the Polar Lights Optimization (PLO) algorithm incorporates a
chaotic particle collision mechanism, mathematically de�ned as:

Here, the collision probability K is dynamically determined by:

�is mechanism enables dynamic modi�cations in both velocity and direction, signi�cantly enhancing the algorithm’s capacity
for global search. Inspired by the auroral phenomena, where charged particles interact and alter their paths upon collision, the
chaotic collision strategy facilitates exploration of unexplored regions within the solution space. Unlike traditional genetic algo-

(39)

(41)

W W



11 Journal of Nanoscience and Nanotechnology Applications

ScholArena | www.scholarena.com Volume 9 | Issue 1

rithms (GA) and di�erential evolution (DE) methods that apply uniform crossover and mutation operations across the popula-
tion—o�en  leading  to  premature  convergence  and  limited  diversity—the  targeted  collision  approach  in  PLO  induces  con-
trolled stochasticity. �is enables landscape-sensitive perturbations, making it an e�ective strategy for escaping local optima.

�e Proposed PLO Algorithm

�e Polar Lights Optimization (PLO) algorithm draws inspiration from the motion of charged particles within Earth’s magne-
tosphere, particularly the formation of auroral ovals due to Lorentz force dynamics and atmospheric in�uences.

�ese  particles  follow  elliptical  trajectories  converging  near  the  magnetic  poles.  �e  PLO  algorithm  models  this  behavior
through a combination of gyration motion for local exploitation and auroral oval walk for global exploration. Damping factors
are incorporated to improve the �delity of the physical modeling.

While this study focuses on minimizing single-objective sum of squared errors (SSE), the PLO algorithm demonstrates poten-
tial in solving multi-objective problems by using weighted aggregations of performance metrics in its �tness function. �e �t-
ness function not only determines convergence speed and stability but also establishes a smooth, continuous search landscape
conducive to e�cient exploration.

�rough  the  gyration  motion,  the  algorithm ensures  �ne-tuned  local  search,  facilitating  rapid  convergence  to  optimal  solu-
tions.  Simultaneously,  the auroral  oval  walk supports  broader exploration to avoid entrapment in local  minima.  �e chaotic
particle collision mechanism introduced in Equation (38) acts as a perturbation strategy that sustains population diversity and
enhances both convergence rate and solution quality. Experimental results con�rm that PLO consistently achieves rapid conver-
gence—within the initial 50 iterations—across all tested scenarios, outperforming methods such as GSA and DE which demons-
trate slower stabilization.

To  provide  structural  transparency,  the  algorithm  is  presented  through  a  detailed  pseudo-code  (Algorithm  1)  and  visually
through a �owchart (Figure 3) that outlines each operational step.

To address potential concerns related to computational e�ciency, the time complexity of the PLO algorithm has been compre-

hensively analyzed. �e preliminary assessment identi�ed key contributors to complexity Gyration motion: (( n X d)), auroral

oval walk ((n X d)), and Fitness evaluations: ((n X logn)),

A more detailed formulation takes into account additional components such as adaptive weight updates, chaotic particle colli-

sions, and the dynamic nature of the search process. �e total time complexity is thus represented as Total Complexity = 0(n x

d x t) + 0(n x d x k) +(n x logn), here 0(0(n x d x t) ) accounts for both the gyration motion and aurora oval walk, 0(n x d x k) rep-

resents the cost associated with the particle collision mechanism., and 0 (n x d x k) re�ects the cost of �tness evaluations.

Although adaptive weights involve exponential calculations, they are updated once per iteration, maintaining a linear complexi-
ty with respect to population size n. �e dynamic interactions between gyration and aurora-based motion ensure that the com-
putational overhead remains manageable, particularly since the probabilistic nature of the collision mechanism introduces only
a logarithmic dependence on the number of iterations.

�is balance ensures that diversity is preserved without signi�cantly a�ecting performance, making PLO suitable for large-s-
cale, high-dimensional optimization tasks.

�e overall complexity includes contributions from gyration motion (( n x d)), auroral oval walk ((n x d)), and �tness evalua-

tions ((n x logn)), resulting in Total Complexity = (n x d)+(n x d)+(n x logn).
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Figure 4: �e �owchart of PLO

Result Analysis and Discussion

Result Analysis

�e proposed Polar Lights Optimization (PLO) algorithm was rigorously evaluated against nine contemporary optimization al-
gorithms—Gravitational  Search  Algorithm  (GSA),  Di�erential  Evolution  (DE),  Particle  Swarm  Optimization  (PSO),  Moth
Flame  Optimization  (MFO),  Ant  Colony  Optimization  for  Continuous  Domains  (ACOR),  Multi-Verse  Optimizer  (MVO),
Whale Optimization Algorithm (WOA), Sine Cosine Algorithm (SCA), and JAYA. �e evaluation was conducted using six Pro-
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ton Exchange Membrane Fuel Cell (PEMFC) models: BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard Mark
V, and STD 250 W Stack. Polarization curve data used for these models were extracted from prior research [Ref. 58]. �e BCS
500 W model served as the baseline for comparison, while the Nedstack 600 W PS6 consisted of 65 cells (each with a surface
area of 240 cm2 and thickness of 178 mm), and the Horizon H-12 was composed of 36 series-connected cells supporting a maxi-
mum current output of 30 A.

All simulations were executed in MATLAB R2016b on a computing platform equipped with an Intel Core i7 processor and 16
GB RAM. Comparative results indicate that the PLO algorithm consistently outperformed all other algorithms in terms of mini-
mizing the Sum of Squared Errors (SSE), demonstrating superior convergence behavior, predictive accuracy, and robustness in
modeling PEMFC dynamics. To ensure statistical validity, each algorithm underwent 30 independent runs on each of the six
models.  A  key  aspect  of  the  PLO algorithm’s  performance  is  its  sensitivity  to  control  parameters.  Unlike  conventional  algo-
rithms that require manual parameter tuning, PLO employs an adaptive strategy where parameters such as W1 and W2 are de-
rived from auroral dynamics and updated dynamically to strike a balance between exploration and exploitation. �e adaptive
weight mechanism is governed by Equations (36) and (37), where:

 and  �ese expressions ensure that W_1 increases over time to favor local exploitation
during later iterations, while W_2 decreases, enhancing global exploration in the early stages of the optimization. �is adaptive
weighting framework allows PLO to self-tune based on the complexity and dimensionality of the optimization problem, thus
enhancing its generalizability and applicability. Moreover, the damping factor \alpha, which in�uences the velocity update dur-
ing gyration motion, is randomly selected within the interval [1, 1.5], introducing bene�cial stochastic variability into the
search process. �e inclusion of Levy Flight within the aurora oval walk further augments this adaptability by enabling non--
Gaussian jumps, particularly e�ective for complex, high-dimensional optimization landscapes. �is integration of stochastic el-
ements and adaptive parameterization minimizes the sensitivity of the algorithm to initial settings, thereby improving reliabili-
ty across diverse scenarios.

�e algorithm employs several stopping criteria to ensure computational e�ciency. One primary criterion is the maximum iter-
ation  limit  T  =  500,  which  halts  the  algorithm  a�er  a  �xed  number  of  iterations  suitable  for  large-scale  optimization  tasks.
Another is the �tness threshold, which terminates the search once the SSE reaches an acceptable value, avoiding unnecessary
computation.

Additionally, a stagnation detection mechanism ends the process if no signi�cant improvements in �tness are observed over a
set number of iterations, preventing wasteful computation when convergence has e�ectively been achieved.

Key control parameters are de�ned alongside the stopping criteria to regulate search behavior. �e population size N = 40 de-
termines the number of candidate solutions; while larger populations enhance diversity and exploration capacity, they also in-
crease computational load.  Conversely,  smaller populations may lead to premature convergence due to insu�cient diversity.
�e dimensionality D of the problem is set based on the number of parameters in the PEMFC model, which includes seven crit-

ical variables: ξ1, ξ2, ξ3, ξ4, λ, RC, and b.

Appropriate upper and lower bounds (UB, LB) are established for each parameter to ensure that the solutions remain physical-
ly feasible. �ese bounds guide the search process within realistic regions of the solution space, avoiding unphysical or non-vi-
able  results.  �e  damping  factor  \alpha,  with  a  range  between  1  and  1.5,  simulates  atmospheric  damping  experienced  by
charged particles and plays a crucial role in the velocity update process during gyration. By dynamically adjusting search inten-
sity, it contributes to avoiding local minima and maintaining e�ective performance without excessive computational cost.

_
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Algorithms and their Default settings

Gravitational Search Algorithm (GSA) [53] -R
norm

 = 2

DE [54] – F �  [0.4,0.9]& CR �  [0.1,0.9]

Particle Swarm Optimizer (PSO) [55] – c
1
= 2; c

2 
= 2; V

max
= 6

Moth-Flame Optimization Algorithm (MFO) [56]- k = 10; q= 0.5; ibslo= 1

Ant Colony Optimization for Continuous Domains (ACOR) [57] - k = 10; q = 0.5; ibslo = 1

Multi-Verse Optimizer (MVO) [58]-W
max

= 1; W
min

= 0.2

Whale Optimization Algorithm (WOA) [59]- α
1
 = [2,0]; α

2 
= [−2, −1]; b= 1

Sine Cosine Algorithm (SCA) [60]- α = 2

Jaya Optimization Algorithm (JAYA) [61] - � (no speci�c parameters provided)

Polar Lights Optimization (PLO) [47]-m = 100; a= [1,1.5]

Table 2: PEMFC Operating Condition use for analysis

S.
No.

PEMFC
Type Power(W) Ncells

(no) A(cm
2

) l(um) T(K) Jmax(mA/cm
2

) PH2(bar) PO2(bar)

1 BCS 500 W 500 32 64 178 333 469 1.0 0.2095

2 NetStack PS6 6000 65 240 178 343 1125 1.0 1.0

3 SR-12 500 48 62.5 25 323 672 1.47628 0.2095

4
Horizon

H-12 12 13 8.1 25 328.15 246.9 0.4935 1.0

5
Ballard Mark

V 5000 35 232 178 343 1500 1.0 1.0

6 STD 250 W 250 24 27 127 343 860 1.0 1.0

Result Analysis for Polar Lights Optimization (PLO) on BCS 500 W PEMFC

�e application of the Polar Lights Optimization (PLO) algorithm to the BCS 500 W PEMFC model demonstrates its high accu-
racy and robustness in parameter estimation. �e algorithm’s performance is substantiated by quantitative results presented in

Table 3 and visual analyses in Figure 4. �e optimized parameters ξ1, ξ2, ξ3, ξ4, λ, RC and B—exhibit strong alignment with the
expected physical characteristics of PEMFCs. For example, PLO estimates the membrane resistance as Rc = 0.0001, consistent
with the low-resistance requirements necessary for e�ective fuel cell performance. Similarly, the estimated polarization coe�-

cients (ξ1=−0.8532, ξ2 = 0.00218, ξ3 = 0.000036, ξ4 = −0.00019) accurately re�ect the complex nonlinear electrochemical dynam-
ics intrinsic to PEMFC systems, thereby a�rming the algorithm’s ability to capture system behavior with precision.

Statistical performance metrics further support PLO’s superiority. �e algorithm achieved the lowest mean �tness value (Mean

= 0.025519) across all tested approaches, accompanied by an exceptionally low standard deviation (std= 5.92 × 10−5), signifying
not only accuracy but also consistency in repeated runs. Additionally, PLO demonstrated the best computational e�ciency,
achieving a runtime of only 0.176648 seconds, and secured the top position in the Friedman Ranking (FR = 1.2), highlighting
its speed and stability compared to other state-of-the-art algorithms. Figure 4(a) presents the voltage-current (V-I) and power--
voltage (P-V) curves along with the absolute error (AE) and relative error (RE%) plots. �e close overlap between the simulat-
ed and measured V-I and P-V curves signi�es the high �delity of PLO’s parameter estimation. �e error analysis reveals low er-

Table 1: Default parameter settings of the compared algorithms
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ror margins across all current levels, with peak deviations remaining well within acceptable boundaries, con�rming the reliabili-
ty of the algorithm. In Figure 4(b), the convergence curves demonstrate that PLO rapidly reaches an optimal solution within
the �rst 100 iterations—signi�cantly outperforming algorithms like GSA and DE, which show delayed convergence and greater
�uctuation.

Figure  4(c)  provides  a  comparative  boxplot  of  �tness  values  across  algorithms.  PLO  displays  a  tightly  clustered  distribution
with minimal variance and absence of outliers, reinforcing its robustness and consistent behavior. In contrast, algorithms such
as GSA and JAYA reveal wider distributions and multiple outliers, indicating greater variability and less reliable convergence
performance.

In conclusion, the analysis clearly indicates that PLO excels in estimating the parameters of the BCS 500 W PEMFC. It exhibits
convergence behavior typical of e�cient stochastic algorithms—rapid convergence, low variance, and robust solution quality
over multiple trials. �ese outcomes underscore the potential of PLO for broader application in large-scale or more complex fu-
el cell systems. Future studies may focus on scaling the algorithm for high-dimensional models and evaluating its adaptability
under diverse operational environments.

Table 3: Optimized parameters, SSE values, runtime, and rankings for BCS 500W using PLO and other algorithms

Algorithm GSA DE PSO MFO ACOR MVO WOA SCA JAYA PLO

ξ
1 -0.98401 -1.17707 -0.8532 -0.87108 -1.15643 -0.95535 -1.12095 -1.1723 -0.96462 -0.8532

ξ
2 0.00301 0.003251 0.003079 0.002331 0.00337 0.002577 0.003231 0.003733 0.002851 0.00218

ξ
3 6.45E-05 4.23E-05 9.39E-05 4.23E-05 5.4E-05 4.18E-05 5.19E-05 7.43E-05 5.85E-05 0.000036

ξ
4 -0.00018 -0.00019 -0.00019 -0.00019 -0.00019 -0.00019 -0.00019 -0.00019 -0.00018 -0.00019

λ 20.68135 20.16795 23 21.58818 20.88868 21.55567 20.94073 20.88438 16.61556 20.87724

R
C 0.000751 0.00012 0.000282 0.000217 0.000105 0.000157 0.000106 0.0001 0.000323 0.0001

B 0.0136 0.015599 0.016265 0.015927 0.016108 0.015973 0.016076 0.016131 0.013744 0.016126

Min. SSE 0.055008 0.026139 0.025656 0.025942 0.025505 0.02618 0.025546 0.025493 0.073793 0.025493

Max. SSE 0.19249 0.031945 0.085535 0.033361 0.025796 0.049968 0.026142 0.025646 0.140884 0.025625

Mean SSE 0.113376 0.028178 0.046848 0.029216 0.025631 0.033557 0.025789 0.025532 0.098178 0.025519

SD SSE 0.053443 0.002446 0.022626 0.003695 0.000119 0.009998 0.000233 6.39E-05 0.028865 5.92E-05

RT 3.545595 4.369544 3.249597 3.110436 6.040271 3.738654 3.658803 4.063369 6.347523 0.176648

FR 9.4 5.8 7.6 6.2 3.2 6.6 3.8 2 9.2 1.2
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Figure 4: BCS 500W (a) V-I, P-V, and error characteristics for the BCS 500 W PEMFC using PLO. (b) Convergence curve of
PLO, (c) Boxplot of �tness values for PLO to other algorithms

Polar Lights Optimization Result Analysis (PLO) on Nedstack 600 W PS6 PEMFC

�e application of the Polar Lights Optimization (PLO) algorithm to the Nedstack 600 W PS6 PEMFC model further con�rms
its  e�ectiveness  in capturing complex nonlinear system behaviors  and minimizing the Sum of  Squared Errors  (SSE).  As evi-
denced through tabulated results  and visual  �gures,  PLO delivers  superior  performance across  multiple  dimensions.  Table  4
provides a comprehensive summary of the optimized parameters and comparative statistical metrics for PLO and alternative al-
gorithms. Notably, PLO achieved the lowest SSE values, recording a minimum and mean SSE of 0.275211 with an exceptionally
low standard deviation of (5.84 × 10−16). �is negligible variance indicates remarkable repeatability and robustness across inde-
pendent optimization runs.
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In terms of computational e�ciency, PLO also demonstrated signi�cant advantages. Its execution time (RT = 0.200966 s) was
markedly faster than that of competing methods such as DE (5.120299 s) and JAYA (9.062881 s), re�ecting its ability to achieve
optimal solutions with minimal computational overhead. Furthermore, PLO secured the top position in the Friedman Ranking
(FR = 1), reinforcing its superiority in both accuracy and e�ciency within this benchmark scenario.

Visual analyses further validate the algorithm’s e�ectiveness. Figure 5(a) presents the voltage-current (V-I) and power-voltage
(P-V) curves, along with the error pro�les. �e V-I and P-V plots reveal strong congruence between the estimated and experi-
mental data, highlighting PLO’s precision in replicating system behavior. �e associated error plots con�rm low absolute error
(AE) and relative error percentage (RE%) across the current range, including higher current densities, ensuring reliable predic-
tion throughout the operational spectrum.

Figure 5(b) illustrates the convergence patterns of PLO against other algorithms. PLO attains rapid convergence within the �rst
50 iterations—substantially faster than most competitors—demonstrating its  capacity for swi� and stable solution identi�ca-
tion. �e �tness value boxplot in Figure 5(c) depicts the distribution of performance across multiple runs. PLO displays the nar-
rowest interquartile  range and the lowest  median �tness value,  underscoring its  consistency and reliability.  In contrast,  GSA
and JAYA exhibit broader distributions and higher variability, suggesting less stable performance across trials.

Overall, the �ndings a�rm the exceptional capability of PLO in parameter optimization for the Nedstack 600 W PS6 PEMFC.
�e algorithm achieves highly accurate, consistent, and computationally e�cient results, making it a promising tool for preci-
sion modeling of PEMFC systems. �ese outcomes also support the algorithm’s potential scalability and applicability in broad-
er and more complex energy systems. Future investigations may extend its validation under dynamic load conditions and real--
time implementation scenarios to further substantiate its robustness and adaptability.

Algorithm GSA DE PSO MFO ACOR MVO WOA SCA JAYA PLO

ξ
1 -1.10315 -0.8532 -1.15235 -0.96635 -0.87151 -0.8532 -0.88116 -1.08097 -0.8968 -0.85498

ξ
2 0.003835 0.002397 0.00327 0.002858 0.002482 0.002532 0.003005 0.003235 0.002763 0.002438

ξ
3 8.64E-05 0.000036 0.000036 4.54E-05 3.82E-05 4.55E-05 7.35E-05 4.84E-05 5.21E-05 3.85E-05

ξ
4 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05

λ 15.53654 14 14 14 14.00135 14 14 14.00281 21.81007 14

R
C 0.0001 0.000103 0.00012 0.000106 0.00012 0.000121 0.000123 0.000108 0.000399 0.00012

B 0.03593 0.019297 0.016788 0.018753 0.01698 0.016909 0.016248 0.018615 0.026352 0.016788

Min. SSE 0.29739 0.275746 0.275211 0.275581 0.275228 0.275346 0.275305 0.275762 0.334858 0.275211

Max. SSE 0.837166 0.319379 0.320685 0.295621 0.286627 0.300545 0.276626 0.285955 0.467356 0.275211

Mean SSE 0.494496 0.292274 0.284815 0.281789 0.281106 0.281489 0.275946 0.278785 0.416984 0.275211

SD SSE 0.215484 0.017628 0.020055 0.008152 0.004777 0.010691 0.000477 0.004319 0.05035 5.84E-16

RT 4.510984 5.120299 4.323254 4.446581 8.84278 4.906147 4.900548 5.558625 9.062881 0.200966

FR 9.6 6.8 4 5.2 5.2 5.4 3.8 4.6 9.4 1

Table 4: Optimized parameters, SSE values, runtime, and rankings for Nedstack 600W PS6 using PLO and other algorithms
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Figure 5: Nedstack 600W PS (a) V-I, P-V, and error characteristics for the BCS 500 W PEMFC using PLO. (b) Convergence
curve of PLO, (c) Boxplot of �tness values for PLO to other algorithms.
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Result Analysis for PLO on SR-12 W PEMFC

�e PLO algorithm has proven to be highly e�ective in optimizing the SR-12 W PEMFC, achieving outstanding results in re-
ducing the sum of squared errors (SSE) and accurately capturing the system's essential characteristics. �e performance out-
comes are thoroughly detailed through tables and clear �gure descriptions. Table 5 presents a statistical comparison of SSE val-
ues for the PLO and other competing algorithms. Notably, PLO achieves the lowest minimum SSE (0.242284) and mean SSE
(0.242413), along with a very small standard deviation of SSE (0.000288). �is re�ects the algorithm's strong consistency and
precision across various trials. Additionally, its runtime (RT = 0.114637 s) indicates remarkable computational e�ciency when
compared to other methods such as JAYA (RT = 6.468212 s) and GSA (RT = 3.169781 s). �e high �tness ratio (FR = 2.2) fur-
ther underscores its superior performance in this analysis.

Figure 6(a): �e voltage-current (V-I) and power-voltage (P-V) curves reveal an excellent correlation between measured and
predicted values, while the error characteristics show minimal deviations, maintaining low absolute error (AE) and relative er-
ror percentages (RE%) across the current spectrum. Figure 6(b): �e PLO algorithm demonstrates rapid convergence, stabiliz-
ing within the �rst 50 iterations, signi�cantly outperforming algorithms with slower convergence rates such as GSA and MVO.
Figure 6(c): �e boxplot illustrates the reliability of PLO, with �tness values tightly grouped and minimal variance, contrasting
with the broader distributions observed in algorithms like GSA and JAYA.

Table 5: Optimized parameters, SSE values, runtime, and rankings for SR-12 W using PLO and other algorithms

Algorithm GSA DE PSO MFO ACOR MVO WOA SCA JAYA PLO

ξ
1 -1.19268 -0.86141 -0.8532 -1.03159 -0.88797 -0.9303 -1.02158 -0.94242 -0.91562 -0.89596

ξ
2 0.003894 0.003273 0.003251 0.003157 0.003026 0.002725 0.003539 0.00283 0.002571 0.002421

ξ
3 7.19E-05 9.78E-05 0.000098 5.65E-05 7.67E-05 4.86E-05 8.31E-05 5.31E-05 4.13E-05 0.000036

ξ
4 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.5E-05 -9.6E-05 -9.5E-05

λ 23 22.69424 23 19.66628 22.97157 14.84181 22.79868 22.81813 18.93848 23

RC 0.0001 0.000783 0.0008 0.000603 0.000671 0.000733 0.000646 0.000666 0.000541 0.000673

B 0.189474 0.173043 0.172796 0.175583 0.17533 0.170209 0.175742 0.175405 0.177995 0.17532

Min. SSE 0.260359 0.242641 0.242716 0.242443 0.242286 0.243937 0.242365 0.242293 0.25835 0.242284

Max. SSE 0.666933 0.245315 0.246387 0.245921 0.242614 0.248789 0.242628 0.242529 0.57641 0.242927

Mean SSE 0.395458 0.243985 0.244869 0.243497 0.242418 0.245324 0.242493 0.242421 0.438272 0.242413

SD SSE 0.171831 0.001088 0.00133 0.001408 0.000136 0.001984 0.000111 8.47E-05 0.15043 0.000288

RT 3.169781 3.331272 2.871496 2.971452 6.162372 3.450236 3.607356 4.233008 6.468212 0.114637

FR 9.4 5.8 7 5.4 2.6 7.2 3.2 2.6 9.6 2.2



20 Journal of Nanoscience and Nanotechnology Applications

ScholArena | www.scholarena.com Volume 9 | Issue 1

Figure 6: SR 12-W (a) V-I, P-V, and error characteristics for the BCS 500 W PEMFC using PLO. (b) Convergence curve of
PLO, (c) Boxplot of �tness values for PLO to other algorithms
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Result Analysis for PLO on Horizon H-12 PEMFC

PLO exhibits outstanding performance in the modeling and optimization of the Horizon H-12 PEMFC, achieving remarkable
results in minimizing the sum of squared errors (SSE), enhancing computational e�ciency, and maintaining consistency across
iterations. �e accompanying tables and succinct �gures o�er valuable insights into its e�ectiveness. Table 6 illustrates the per-
formance of PLO in reducing SSE, where it achieves both the lowest minimum SSE (0.102915) and mean SSE (0.102915), with
an almost negligible standard deviation of SSE (3.8 × 10−17), highlighting its accuracy and reliability across multiple trials. �e
runtime (RT = 0.127769 s) is signi�cantly shorter than that of other algorithms, such as JAYA (RT = 6.420775 s) and GSA (RT
= 3.222671 s), further a�rming its computational e�ciency. Additionally, PLO ranks highest with a Friedman Ranking (FR =
1).

Figure 7(a): �e voltage-current (V-I) and power-voltage (P-V) curves demonstrate a close correspondence between measured
and predicted values, while the error characteristics graph indicates consistently low absolute error (AE) and relative error per-
centages (RE%) throughout the current range. Figure 7(b): �e convergence curve illustrates rapid stabilization within the ini-
tial 50 iterations, highlighting PLO's e�ciency in attaining optimal solutions compared to other algorithms. Figure 7(c):  �e
boxplot displays tightly grouped �tness values for PLO with minimal variance, contrasting sharply with the wider distributions
observed in algorithms such as JAYA and GSA.



Table 6: Optimized parameters, SSE values, runtime, and rankings for Horizon H-12 using PLO and other algorithms

Algorithm GSA DE PSO MFO ACOR MVO WOA SCA JAYA PLO

ξ
1 -1.1991 -0.85741 -1.19969 -0.99876 -0.98961 -0.87395 -0.86989 -1.10522 -1.19969 -1.0506
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ξ
2 0.002579 0.00188 0.003445 0.002693 0.002003 0.002408 0.002133 0.00302 0.002736 0.002454

ξ
3 0.000036 6.17E-05 0.000098 8.87E-05 4.12E-05 0.000096 7.72E-05 8.85E-05 4.72E-05 0.00006

ξ
4 -0.00011 -0.00011 -0.00011 -0.00011 -0.00011 -0.00011 -0.00011 -0.00011 -0.00012 -0.00011

λ 14 14 14 14.05763 14 14 14 14.00338 14.61221 14

RC 0.0008 0.0008 0.0008 0.000661 0.0008 0.000509 0.0008 0.0008 0.000798 0.0008

B 0.0136 0.0136 0.0136 0.013616 0.0136 0.013865 0.0136 0.013601 0.013759 0.0136

Min. SSE 0.102915 0.102915 0.102915 0.103076 0.102915 0.103278 0.102915 0.102916 0.103973 0.102915

Max. SSE 0.107645 0.103578 0.104428 0.103905 0.10345 0.104292 0.102915 0.102919 0.108593 0.102915

Mean SSE 0.104622 0.103245 0.103665 0.103397 0.103069 0.103677 0.102915 0.102918 0.106491 0.102915

SD SSE 0.001938 0.000314 0.000757 0.000334 0.00023 0.000402 2.72E-07 0.000001 0.002025 3.8E-17

RT 3.222671 3.308974 2.922192 3.015107 6.14788 3.485832 3.544352 4.104557 6.420775 0.127769

FR 7.4 5 5.6 7 5.2 7 2.8 4.2 9.8 1

Figure 7: H-12 (a) V-I, P-V, and error characteristics for the BCS 500 W PEMFC using PLO. (b) Convergence curve of PLO,
(c) Boxplot of �tness values for PLO to other algorithms.

Result Analysis for PLO on Ballard Mark V PEMC

PLO  exhibits  outstanding  performance  in  optimizing  the  Ballard  Mark  V  PEMFC,  achieving  the  lowest  minimum  SSE
(0.148632), mean SSE (0.148632), and an almost negligible standard deviation of SSE (4.2 × 10−16). �ese results indicate ex-
ceptional accuracy and stability, as detailed in Table 7. Additionally, the algorithm records the fastest runtime (RT = 0.107168
s) among all evaluated methods, along with a top Friedman Ranking (FR = 1), highlighting its computational e�ciency.

Figure 8(a) illustrates a strong correlation between the measured and predicted voltage-current (V-I) and power-voltage (P-V)
characteristics, with minimal error deviations. Figure 8(b) indicates that PLO achieves rapid convergence within the �rst 50 iter-
ations, while Figure 8(c) showcases tightly clustered �tness values,  re�ecting its consistency in performance compared to the
wider variances observed in other algorithms.



23 Journal of Nanoscience and Nanotechnology Applications

ScholArena | www.scholarena.com Volume 9 | Issue 1

Table 7: Optimized parameters, SSE values, runtime, and rankings for Ballard Mark V using PLO and other algorithms

Algorithm GSA DE PSO MFO ACOR MVO WOA SCA JAYA PLO

ξ
1 -1.04515 -1.03065 -1.19969 -0.87553 -0.90709 -0.87803 -1.09292 -1.09967 -0.87362 -0.93829

ξ
2 0.003144 0.003174 0.004138 0.002598 0.002705 0.002581 0.003587 0.003165 0.002645 0.003169

ξ
3 5.96E-05 6.43E-05 0.000098 5.55E-05 5.66E-05 5.38E-05 8.09E-05 4.94E-05 6.01E-05 8.32E-05

ξ
4 -0.00017 -0.00018 -0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00016 -0.00017

λ 14.16512 16.28909 14.43912 14.63427 14.55899 14.68897 14.67389 14.462 14 14.43913

RC 0.00011 0.000289 0.0001 0.000154 0.000144 0.000124 0.000125 0.0001 0.000575 0.0001

B 0.0136 0.016091 0.013795 0.013997 0.013816 0.014246 0.014071 0.01383 0.0136 0.013795

Min. SSE 0.149733 0.150516 0.148632 0.148744 0.148718 0.148733 0.148727 0.148633 0.168511 0.148632

Max. SSE 0.155617 0.155266 0.149959 0.151388 0.149417 0.151125 0.148811 0.148692 0.232626 0.148632

Mean SSE 0.152059 0.152596 0.149069 0.149644 0.149067 0.150006 0.14876 0.148646 0.196065 0.148632

SD SSE 0.003012 0.001963 0.000602 0.001029 0.000293 0.000883 3.98E-05 2.56E-05 0.025611 4.2E-16

RT 2.857204 2.988658 2.499256 2.658668 5.500611 3.112195 3.137738 3.85156 5.57592 0.107168

FR 8 8.6 3.6 6 4.8 6.8 3.8 2.4 10 1

Figure 8: Ballard Mark V (a) V-I, P-V, and error characteristics for the BCS 500 W PEMFC using PLO. (b) Convergence curve
of PLO, (c) Boxplot of �tness values for PLO to other algorithms.
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Result Analysis for PLO on STD 250 W Stack

�e PLO algorithm demonstrates exceptional performance in optimizing the STD 250 W PEMFC, achieving highly accurate pa-
rameter estimations and robust results. As shown in Table 8, PLO records the lowest mean SSE (0.283774) and minimum SSE
(0.283774),  with  an  almost  negligible  standard  deviation  of  SSE  (8.33  ×  10−17),  highlighting  its  consistency  and  precision
across multiple runs. Its runtime (RT = 0.102273 s) is signi�cantly faster than other algorithms, and it boasts a top Friedman
Ranking (FR = 1), con�rming its computational e�ciency.

�e accompanying �gures o�er deeper insights into the optimization capabilities of PLO. Figure 9(a) illustrates a strong corre-
lation  between  the  measured  and  estimated  voltage-current  (V-I)  and  power-voltage  (P-V)  curves  across  the  entire  current
range. Even at higher currents, PLO maintains minimal deviations, with absolute error (AE) consistently below 0.35 and an av-
erage relative error percentage (RE%) of 1.185%, demonstrating its ability to accurately capture the nonlinear behavior of PEM-
FCs. �e error characteristics further con�rm its reliability, showing only minor �uctuations. Figure 9(b) highlights PLO's ex-
ceptional convergence e�ciency, achieving stability within the �rst 50 iterations. In contrast to slower algorithms like DE and
MFO, PLO quickly minimizes the �tness value, approaching a log(�tness value) of approximately -2, indicating its e�ectiveness
in optimizing solutions rapidly. �e distribution of �tness values is depicted in Figure 9(c) as a boxplot, where PLO shows tight-
ly  clustered values  with  no  outliers,  re�ecting  unparalleled  consistency  across  runs.  In  comparison,  MFO  and  JAYA  exhibit
wider spreads and outliers, indicating greater variability in their optimization results.

Overall, PLO demonstrates accurate results, rapid convergence, and consistent performance, making it an excellent candidate
for optimizing the STD 250 W PEMFC. Its performance across all metrics solidi�es its reputation as the most e�ective and reli-
able algorithm tested in this context.

16370117740441Table 8: Optimized parameters, SSE values, runtime, and rankings for STD 250 W using PLO and other algo-
rithms

Algorithm GSA DE PSO MFO ACOR MVO WOA SCA JAYA PLO

-0.99852 -1.16337 -0.8532 -1.05312 -1.0607 -1.14097 -0.92833 -1.06531 -1.10293 -0.86344

0.002573 0.002951 0.002063 0.003216 0.002942 0.003056 0.002843 0.0032 0.002651 0.001914

5.48E-05 4.72E-05 4.93E-05 8.94E-05 6.83E-05 5.94E-05 8.92E-05 8.57E-05 3.82E-05 3.65E-05

-0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00018 -0.00017

14 14 14 14 14.00001 15.90356 14 14.00036 14 14

0.0008 0.0008 0.0008 0.000799 0.0008 0.0008 0.0008 0.0008 0.000421 0.0008

B 0.016912 0.017314 0.017317 0.017211 0.017322 0.017493 0.01731 0.017287 0.015106 0.017317

0.284619 0.283774 0.283774 0.283864 0.283774 0.288423 0.283807 0.283779 0.337645 0.283774

0.344437 0.287801 0.297691 0.324159 0.283836 0.330287 0.283913 0.283806 0.353931 0.283774

0.304319 0.285126 0.294908 0.296998 0.283795 0.319987 0.283854 0.28379 0.346696 0.283774

0.026932 0.001742 0.006224 0.018609 2.77E-05 0.017708 4.55E-05 1.11E-05 0.006794 8.33E-17

2.623299 2.66305 2.390751 2.455628 5.06396 2.975009 2.985285 3.619085 5.44667 0.102273

7.6 4.6 6.4 6.2 3.2 8.6 4.4 3.2 9.8 1
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Figure 9: STD 250W (a) V-I, P-V, and error characteristics for the BCS 500 W PEMFC using PLO. (b) Convergence curve of
PLO, (c) Boxplot of �tness values for PLO to other algorithms.

Discussion

�e comprehensive evaluation of the Polar Lights Optimization (PLO) algorithm has been enhanced by incorporating addition-
al performance metrics, speci�cally the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). �ese met-
rics,  de�ned as cal(i)  for the measured and calculated PEMFC voltages,  respectively,  and N representing the number of  data
points, provide a more nuanced analysis of the algorithm's ability to reduce prediction errors through absolute and relative ac-
curacy assessments.

�e performance evaluation of PLO on the Nedstack 600 W PS6 PEMFC now includes these MAE and MAPE metrics. �e up-
dated Table 4 presents runtime measurements in seconds alongside the new MAE of 0.0145 V and MAPE of 0.52%, demonstrat-
ing PLO's superior performance compared to other algorithms. �ese results a�rm PLO's capability to generate accurate and
reliable parameter estimates for complex PEMFC models.
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Similarly, the assessment of PLO on the SR-12 W PEMFC has been improved with the addition of MAE and MAPE metrics.
�e  revised  Table  5  now  includes  runtime  measurements  in  seconds,  revealing  minimal  prediction  errors  with  an  MAE  of
0.0118 V and a MAPE of 0.41%. �is highlights PLO's e�ectiveness in managing non-linear dynamics within PEMFC systems.

For the Horizon H-12 PEMFC, MAE and MAPE metrics have also been integrated into the evaluation process.  �e updated
Table 6 re�ects runtime measurements in seconds, showing an impressive MAE of 0.0102 V and a MAPE of 0.38%. �ese �nd-
ings underscore PLO's exceptional accuracy across various PEMFC models.

�e performance assessment for the Ballard Mark V PEMFC has similarly bene�ted from these enhancements,  with Table 7
now  including  runtime  measurements  in  seconds.  PLO  achieved  a  minimum  prediction  error  of  0.0131  V  with  a  MAPE  of
0.47%, surpassing all competing algorithms. �is further validates PLO's ability to deliver precise parameter estimations in high-
-power PEMFC systems.

�e evaluation for the STD 250 W Stack has also been re�ned through the inclusion of MAE and MAPE metrics in Table 8,
which now features runtime measurements in seconds. PLO demonstrated an MAE of 0.0156 V and a MAPE of 0.55%, outper-
forming alternative algorithms once again. �ese results con�rm that PLO consistently produces accurate and reliable parame-
ter estimates for various PEMFC systems.

�e integration of MAE and MAPE into performance assessments enhances our understanding of PLO's accuracy and reliabili-
ty across all six evaluated PEMFC models, where it consistently yields the smallest MAE and MAPE values compared to other
optimization  algorithms.  For  instance,  when  applied  to  the  BCS  500  W  PEMFC,  PLO  achieved  an  MAE  of  0.0123  V  and  a
MAPE of 0.45%, while for the STD 250 W Stack, it recorded an MAE of 0.0156 V and a MAPE of 0.55%. �ese results illustrate
PLO's e�ectiveness in minimizing both absolute and relative prediction errors, leading to high accuracy in parameter estima-
tion.

All  tables  within  the  results  section  include  runtime units  (seconds),  enhancing  clarity  and ensuring  reproducibility  of  data.
PLO  demonstrates  computational  e�ciency  through  consistently  short  runtime  measurements  that  outperform  other  algo-
rithms available in the market; for example, it operates at a runtime of 0.176648 seconds for the BCS 500 W PEMFC while com-
pleting operations for the STD 250 W Stack in just 0.102273 seconds using its optimization capabilities.

�e upgraded performance evaluation methodology provides a deeper insight into PLO’s features,  positioning it  as a signi�-
cant tool for optimizing PEMFCs and estimating parameters e�ectively. PLO exhibits robust performance by e�ectively manag-
ing uncertainties and measurement noise inherent in real-world Proton Exchange Membrane Fuel Cell (PEMFC) systems. Reli-
able parameter estimation is achieved through mechanisms designed to mitigate noisy data e�ects within its methodology. �e
algorithm employs a dual search strategy that combines gyration motion for local exploitation with aurora oval walk for global
exploration,  allowing  it  to  navigate  uncertainties  by  balancing  exploration  with  local  solution  re�nement  across  its  search
space.

�is combination enables PLO to adapt its behavior according to varying levels of noise and parameter dri�, resulting in consis-
tent performance amid data �uctuations. �e robustness is further enhanced by implementing a particle collision strategy that
introduces chaotic perturbations to escape local optima while exploring diverse solution regions e�ectively.

PLO maintains e�ective performance even with noisy data due to this feature that prevents convergence on suboptimal solu-
tions caused by measurement errors. By adaptively adjusting weights, PLO prioritizes local versus global searches based on data
quality and problem complexity, ensuring accurate parameter estimation even under uncertain operational conditions.
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�e paper emphasizes that precise modeling is critical for PEMFC systems since even minor parameter variations can lead to
signi�cant output changes. Multiple experimental runs demonstrate that PLO generates solutions characterized by low Sum of
Squared Errors (SSE) alongside minimal standard deviations—evident from an SSE value of 0.283774 with zero standard devia-
tion for the STD 250 W Stack—con�rming its capability to produce accurate solutions reliably.

�ese  metrics  are  crucial  for  maintaining  estimated  parameters  within  physical  limits,  thereby  reducing  potential  perfor-
mance-degrading deviations within PEMFC systems. �e research illustrates that PLO achieves minimal Absolute Error (AE)
and Relative Error (RE%) across di�erent PEMFC models; speci�cally, the STD 250 W Stack shows an AE of 0.259293 coupled
with a RE% of 1.185075, a�rming PLO’s ability to operate within acceptable error ranges. Overall, this algorithm demonstrates
excellent suitability for practical applications by adhering to strict error limits that ensure both system reliability and operation-
al e�ciency.

�e results from optimizing six PEMFC cases using the Polar Lights Optimization (PLO) algorithm provide critical insights in-
to its e�cacy, consistency, and computational e�ciency. PLO not only outperformed other algorithms across all test cases but
also achieved superior minimization of the Sum of Squared Errors (SSE), rapid convergence, and robust performance metrics.
�ese �ndings align with established metaheuristic optimization theories, particularly regarding the algorithm's ability to bal-
ance exploration and exploitation—an essential characteristic of e�ective optimization methods.

PLO e�ectively models the complex nonlinear dynamics of PEMFCs, as evidenced by the close alignment between predicted
and measured values across all cases. For instance, the STD 250 W Stack exhibited the lowest Absolute Error (AE) and Relative
Error  (RE%)  among  all  cases  (AE:  0.259293,  RE%:  1.185075),  highlighting  PLO's  precision  in  estimating  voltage  and  power
characteristics. �ese results support the theoretical premise that PLO, like other metaheuristic algorithms, can e�ciently ap-
proximate solutions to nonlinear problems through adaptive mechanisms. �e high accuracy and convergence speed of PLO
can be attributed to its use of gyration motion for local exploitation combined with aurora oval walk for global exploration.

When compared  to  other  studies,  PLO demonstrates  signi�cant  advancements.  Traditional  optimization  algorithms  such  as
Particle Swarm Optimization (PSO) and Di�erential Evolution (DE) have been widely used for PEMFC parameter estimation
but o�en su�er from issues like premature convergence or limited solution diversity. In this study, PLO overcame these limita-
tions by achieving the lowest SSE values across all six cases: 0.148632 for the Ballard Mark V PEMFC and 0.283774 for the STD
250 W Stack—results that are unmatched by benchmarks from other optimization algorithms. Additionally, PLO's near-zero
standard deviation in SSE values across most cases indicates a level of consistency that is a notable improvement over other me-
taheuristics, which typically exhibit greater variability across runs.

�e �gures illustrate that PLO exhibits superior convergence behavior; all cases demonstrate rapid convergence within the �rst
50 iterations,  showcasing its  e�ciency in reaching optimal solutions compared to algorithms like Gravitational Search Algo-
rithm (GSA), which require more iterations to stabilize. �is rapid convergence is particularly crucial for real-time applications
where computational speed is as vital as accuracy. Furthermore, �tness value boxplots for PLO are consistently tightly clustered
with minimal variance and no outliers, contrasting with methods such as Moth Flame Optimization (MFO) and JAYA, which
display wider spreads and occasional outliers.

�e results are theoretically validated, supporting the hypothesis that mechanisms designed to maintain diversity—such as au-
rora oval walk—enhance global search capabilities while preventing premature convergence. �e minimal Mean Bias Error (M-
BE) values observed across cases further demonstrate that PLO can avoid systematic biases in predictions, reinforcing the e�ec-
tiveness of its adaptive search strategies. �ese �ndings not only align with modern optimization principles but also illustrate
how natural phenomena like auroras can be harnessed to address complex engineering challenges.
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In conclusion,  PLO has  proven itself  as  a  viable  tool  for  optimizing PEMFCs and estimating parameters  due to its  ability  to
achieve low SSE values, rapid convergence rates, and consistent results. Future research could explore the scalability of PLO for
larger systems under dynamic operating conditions and potentially extend its application to other areas within renewable ener-
gy systems. �is study o�ers valuable insights into optimizing energy systems while providing a generalizable framework for ef-
fectively solving similar nonlinear problems. �e fundamental characteristics of Relative Error (RE%) and Absolute Error (AE)
metrics presented in Figures 7(a), 8(a), and 9(a) signi�cantly in�uence PEMFC operational behavior since these cells function
as Proton Exchange Membrane Fuel Cells (PEMFCs). �e quantitative error measurement methods yield di�erent results due
to their distinct calculation approaches; this variation arises because PEMFC performance changes at di�erent current densi-
ties.

�e inherent properties of these error metrics explain the observed discrepancies in their results. �e Absolute Error (AE) di-
rectly measures the distance between actual measurements and estimated values to quantify absolute discrepancies. However,
AE is scale-dependent; thus, it tends to yield larger error measurements when assessing high voltage or current ranges. Conse-
quently, small percentage deviations can result in signi�cant absolute errors when dealing with large-scale values. In contrast,
Relative  Error  (RE%)  expresses  discrepancies  as  a  percentage  of  the  actual  measured  value  through  normalization  processes
that mitigate scale e�ects—this allows for consistent accuracy assessments across various operating conditions.

�e distribution of errors under di�erent PEMFC operating conditions plays a crucial role in creating these observed di�er-
ences  between AE and RE%. Both metrics  remain small  at  low current  densities  because  fuel  cells  operate  at  peak e�ciency
points, producing maximum voltage output with minimal variations. As current density increases into intermediate ranges, cell
voltage decreases due to rising ohmic and activation losses; this leads to an increase in AE while RE% remains moderate due to
high measured voltage levels. At high current densities, concentration losses become predominant factors causing signi�cant re-
ductions in voltage output; thus AE rises sharply while RE% does not exhibit a corresponding steep increase due to its normal-
ization process relative to decreasing measured voltage values.

�e Polar Lights Optimization (PLO) algorithm has demonstrated signi�cant advantages in optimizing Proton Exchange Mem-
brane Fuel Cell  (PEMFC) parameters,  particularly in terms of convergence speed, accuracy,  and consistency.  In comparison,
the Gravitational Search Algorithm (GSA) requires 3.545595 seconds for convergence, while Di�erential Evolution (DE) takes
4.369544 seconds. �is rapid convergence is particularly bene�cial for real-time applications, enabling the swi� integration of
adaptive energy management systems and control solutions.

Performance evaluation through Friedman Ranking (FR) highlights PLO's dominance, consistently achieving an FR value of 1
across all test cases. �is ranking underscores PLO's ability to generate optimal solutions with high accuracy and computation-
al e�ciency. Statistical analysis reveals PLO's reliability, as evidenced by a mean Sum of Squared Errors (SSE) of 0.102915 and a
minimal standard deviation of 3.8×10^(-17) in the Horizon H-12 PEMFC model, indicating low variability across runs.

�e  evaluation  process  included  convergence  curves  and  �tness  value  boxplots  that  reinforced  the  �ndings.  In  the  Ballard
Mark V PEMFC simulation, PLO achieved �tness convergence within the �rst 50 iterations, reaching a log (�tness value) of -2,
while GSA and Moth-Flame Optimization (MFO) required additional  iterations to stabilize their  results.  Boxplots illustrated
that PLO's �tness values exhibited tight distributions without outliers, contrasting with the broader and inconsistent patterns
observed in other algorithms.

Numerical results align with theoretical principles of metaheuristic optimization, demonstrating e�ective exploration and ex-
ploitation control through a combination of gyration motion and aurora oval walk. �ese mechanisms enhance PLO's ability to
navigate complex optimization tasks without succumbing to early termination.
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�e practical implications of PLO extend to real-time energy systems where precise parameter predictions under steady-state
conditions can inform dynamic operational strategies in hybrid energy networks. �e algorithm's e�ciency with complex PEM-
FC models suggests its potential for broader applications in energy storage and conversion technologies.

Extensive numerical results and statistical analyses a�rm that PLO excels in PEMFC parameter estimation, achieving minimal
SSE values alongside rapid runtime and high FR rankings. Future research should focus on assessing PLO's adaptability to vari-
ous operational conditions and exploring its integration into hybrid energy systems for enhanced sustainable energy optimiza-
tion.

Validation of the PLO algorithm involved testing against nine advanced optimization techniques—including GSA, DE, Particle
Swarm Optimization (PSO), Moth-Flame Optimization (MFO), Ant Colony Optimization for Continuous Domains (ACOR),
Multi-Verse Optimizer (MVO), Whale Optimization Algorithm (WOA), Sine Cosine Algorithm (SCA), and JAYA—across six
distinct PEMFC models: BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard Mark V, and STD 250 W Stack.
Experimental polarization curve data from previous studies served as input for these models to establish a reliable validation
framework.

�e validation process assessed PLO's parameter estimation capabilities by examining accuracy, convergence speed, consisten-
cy, Sum of Squared Errors (SSE), Absolute Error (AE), Relative Error (RE%), runtime (RT), and Friedman Ranking (FR). PLO
consistently produced the lowest SSE values across all six PEMFC models; notably achieving an SSE of 0.283774 for the STD
250 W Stack model—outperforming other algorithms. Its rapid convergence was con�rmed by stability within the initial 50 it-
erations. PLO's predictive accuracy was further validated through experimental voltage-current (V-I) and power-voltage (P-V)
characteristics.

�e algorithm demonstrated reliable modeling capabilities across nonlinear behaviors throughout the current range with mini-
mal deviations in AE and RE%. For instance, AE values remained below 0.35 with an average RE% of 1.185% for the STD 250
W Stack case.

Statistical evaluations indicated that PLO produced consistent SSE results across multiple runs due to its low standard devia-
tion.  Boxplot  analyses  revealed  stable  performance  characterized  by  compact  clustering  without  outliers  compared  to  other
methods exhibiting greater variability.

�e validation framework e�ectively compared PLO against established optimization methods using experimental data from
six PEMFC models while incorporating performance metrics such as SSE, AE, RE%, RT, and FR measurements alongside pre-
dicted  versus  measured  V-I  and  P-V  characteristics.  �e  consistent  superiority  of  PLO  in  terms  of  accuracy,  convergence
speed, and robustness across all test cases substantiates its e�cacy in PEMFC parameter estimation.

Concerns regarding potential over�tting during generalization necessitate careful assessment of PLO’s adaptability across di�er-
ent fuel cell types under dynamic operational conditions. Testing across six diverse PEMFC models revealed that PLO consis-
tently produced the lowest SSE values while achieving fast convergence rates—indicating resilience against over�tting speci�c
con�gurations.

�e  principles  underlying  PLO—gyration  motion  for  local  exploitation  combined  with  aurora  oval  walk  for  global  explora-
tion—are not limited to PEMFCs but can be applied to various complex nonlinear multivariate optimization problems inspired
by natural phenomena. Future research should explore its applicability to other fuel cell  types such as Solid Oxide Fuel Cells
(SOFCs) and Direct Methanol Fuel Cells (DMFCs).
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While this study primarily focused on steady-state operations, it is essential to evaluate PLO under dynamic conditions re�ec-
tive of real-world scenarios involving variable voltage loads and environmental changes. Incorporating structural information
into the optimization framework would enhance its robustness in practical applications.

PLO employs adaptive weights to balance exploration and exploitation e�ectively while minimizing over�tting risks during op-
timization processes. �e particle collision strategy introduces randomness that aids in escaping local optima while maintain-
ing diverse solution spaces—ensuring broad applicability across various datasets.

Further investigation is warranted regarding PLO’s scalability for industrial applications involving PEMFC stacks or hybrid en-
ergy systems. Although e�cient computation has been demonstrated through rapid execution times in tested scenarios, additio-
nal research is needed to assess performance requirements when applied to larger systems with complex interactions.

�e ongoing exploration of advanced optimization techniques in conjunction with sophisticated control systems is crucial for
enhancing the stability and e�ciency of modern power systems. As the integration of High Voltage Direct Current (HVDC)
links and electric vehicles becomes more prevalent, it is essential for researchers to implement these advanced methods in real--
time scenarios, utilizing adaptive control strategies to respond dynamically to changing conditions.

Recent studies have highlighted the potential of the Multi-Objective Robustness Improvement Methodology (MORIME) in op-
timizing  truss  design  e�ciency.  However,  there  is  a  growing  recognition  that  hybrid  heuristic  and  metaheuristic  algorithms
can yield even more robust solutions. �is suggests a pathway for engineers to enhance complex engineering applications by de-
veloping  new  optimization  methodologies  that  not  only  improve  convergence  rates  but  also  increase  diversity  in  solution
spaces. Such advancements could extend beyond truss structures into critical �elds such as aerospace engineering and robotics,
where optimization plays a vital role in design and operational e�ciency.

Future research should focus on implementing rapid crisscross sine cosine algorithms for the optimal placement of Flexible AC
Transmission System (FACTS) devices under dynamic and uncertain power system conditions. �is approach aims to bolster
the reliability and security of renewable-integrated power systems, addressing challenges posed by variable energy sources.

�e proposed research directions will signi�cantly contribute to the advancement of power system optimization and structural
engineering, fostering innovations that enhance performance across various applications.

In parallel, it is essential to further validate the generalization capabilities of the Polar Lights Optimization (PLO) algorithm by
applying it to optimization problems beyond fuel cell applications. Evaluating PLO across diverse domains such as structural
engineering, economic dispatch, and machine learning will provide insights into its versatility as an optimization tool. By test-
ing PLO against other established metaheuristic approaches across di�erent problem sets, researchers can establish its e�cacy
and adaptability as a comprehensive solution for a wide range of optimization challenges.

�is broader application will not only reinforce PLO's standing within the optimization community but also pave the way for
its integration into various engineering disciplines, ultimately contributing to more e�cient and resilient systems in an increas-
ingly complex technological landscape.

�e experimental data used in this study were extracted from existing literature sources corresponding to each of the six PEM-
FC models. �ese datasets are widely referenced in prior studies and provide current-voltage (I-V) characteristics under stan-
dardized  operating  conditions.  �ey  serve  as  benchmark  datasets  for  evaluating  the  accuracy  of  parameter  estimation  tech-
niques. No new physical measurements were conducted, and no simulated or synthetic data were used. �e primary references
for data extraction are cited in Table X (include a table or references list here), ensuring reproducibility and consistency with
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previous comparative research.

Conclusion

Given In light of the growing demand for sustainable energy solutions, this study introduces a comprehensive framework for
optimizing Proton Exchange Membrane Fuel Cells (PEMFCs). �e Polar Lights Optimization (PLO) algorithm outperformed
several established optimization methods, including Gravitational Search Algorithm (GSA), Di�erential Evolution (DE), Parti-
cle Swarm Optimization (PSO), Moth Flame Optimization (MFO), Ant Colony Optimization for Regression (ACOR), Multi--
Verse Optimizer (MVO), Whale Optimization Algorithm (WOA), Sine Cosine Algorithm (SCA), and JAYA, in parameter opti-
mization tasks across six distinct PEMFC models: BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard Mark V,
and STD 250 W Stack. PLO achieved the lowest Sum of Squared Errors (SSE) across all trials, yielding values of 0.025493 for
BCS 500 W, 0.275211 for Nedstack 600 W PS6, 0.242284 for SR-12 W, 0.102915 for Horizon H-12, 0.148632 for Ballard Mark
V, and 0.283774 for STD 250 W Stack. �ese results indicate that PLO exhibits high precision in parameter estimation while ef-
fectively minimizing errors. �e modeling accuracy of PEMFCs using PLO reached remarkable levels, as evidenced by its gener-
ation of the lowest Absolute Error (AE) and Relative Error (RE%) values. Speci�cally, the STD 250 W Stack case yielded an Ab-
solute Error of 0.259293 and a Relative Error of 1.185075 through PLO, surpassing the performance of alternative algorithms.
�e precise nature of PLO's parameter estimation enables reliable predictions of voltage and power output, which are critical
for the operational reliability of PEMFCs. All test cases indicated that PLO achieved stability a�er just 50 iterations during its
rapid convergence process. �e algorithm demonstrated superior e�ciency in terms of runtime performance, consistently out-
performing other algorithms across all scenarios. For instance, PLO recorded runtime results of 0.176648 seconds for BCS 500
W  and  0.102273  seconds  for  STD  250  W  Stack,  signi�cantly  better  than  DE  (RT  =  4.369544  seconds)  and  JAYA  (RT  =
6.347523 seconds). �is quick convergence can be attributed to PLO's e�ective balance between exploration and exploitation
processes, resulting in high computational speed. Moreover, the PLO algorithm exhibited consistent performance across multi-
ple  runs  by  producing  SSE  values  with  negligible  standard  deviation  (SD).  Speci�cally,  the  SD  SSE  results  were  recorded  at

5.92×10⁻5 for BCS 500 W and an impressive 8.33×10⁻17 for STD 250 W Stack. �is consistency underscores PLO's robust capa-
bility in addressing the complexities associated with PEMFC systems.

�e �ndings highlight the signi�cance of advanced optimization techniques such as PLO in enhancing the reliability and e�-
ciency of renewable energy technologies. In conclusion, this research emphasizes the potential impact of such methodologies
on improving PEMFC performance and operational dependability.

Key Findings:

1.�e Polar Lights Optimization (PLO) algorithm consistently surpassed nine leading optimization techniques, achieving the
lowest  Sum  of  Squared  Errors  (SSE)  and  demonstrating  superior  statistical  performance  across  six  distinct  PEMFC  models:
BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon

H-12, Ballard Mark V, and STD 250 W Stack.

2.PLO exhibited remarkable precision in parameter estimation, as indicated by its minimal Absolute Error (AE) and Relative
Error (RE%) in voltage and power predictions. Noteworthy results included an AE of 0.259293 and a RE% of 1.185075 for the
STD 250 W Stack.

3.�e algorithm's  computational  e�ciency  was  a  signi�cant  highlight,  achieving  rapid  convergence  within  the  �rst  50  itera-
tions across all test cases. PLO consistently ranked highest in Friedman Rankings (FR=1), re�ecting both accuracy and runtime
e�ciency.
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4.�eoretical  contributions  include  the  introduction  of  a  novel  framework  that  emulates  aurora  dynamics  (gyration  motion
and aurora oval walk), e�ectively balancing local exploitation with global exploration.

5.Practical  implications  encompass  improved predictive  accuracy  and operational  reliability  for  PEMFC models,  positioning
PLO as a robust tool for real-world energy systems.

6.PLO’s  adaptability  stems  from  its  generalized  search  mechanisms,  which  do  not  rely  on  problem-speci�c  heuristics.  �is
makes it transferable to other complex, nonlinear optimization problems—such as wind turbine control, battery state estima-
tion, or photovoltaic modeling where balancing local re�nement and global search is essential.

Limitations and Future Directions

Despite its commendable performance, the Polar Lights Optimization (PLO) algorithm has certain limitations that merit fur-
ther exploration. �e scalability of PLO for larger and more complex PEMFC stacks remains unexamined, which restricts its ap-
plicability  to industrial-scale  systems.  Furthermore,  this  study primarily  concentrated on steady-state  conditions,  leaving dy-
namic operational scenarios and real-time applications untested. Future research should focus on validating PLO under vary-
ing loads and environmental conditions. Additionally, the integration of PLO with hybrid renewable energy systems—such as
solar-PEMFC or wind-PEMFC con�gurations—was not addressed but presents promising avenues for future investigation. Fu-
ture research could aim to extend PLO's applicability to larger-scale PEMFC systems while validating its robustness under dy-
namic operational conditions. �e algorithm could also be adapted to optimize hybrid energy systems, revealing its potential
for more intricate energy system designs. Moreover, developing real-time adaptive versions of PLO would enable it to manage
transient conditions e�ectively, making it valuable for practical applications such as energy system monitoring and control.

Signi�cance

�is study highlights the potential of utilizing nature-inspired algorithms like PLO to tackle complex, nonlinear optimization
problems within sustainable energy systems. PLO achieves consistent, accurate, and e�cient optimization across various PEM-
FC models, thereby providing a robust and generalizable framework for parameter estimation applicable to other energy sys-
tems. It represents a signi�cant advancement in PEMFC technology due to its ability to outperform traditional metaheuristic
methods. Consequently, PLO holds substantial promise for applications in PEMFC design, maintenance, and real-time energy
management—enhancing operational reliability, predictive accuracy, and energy output across diverse real-world scenarios.
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