## RESEARCH ARTICLE

# About the strong EULER-GOLDBACH conjecture 

PHILIPPE SAINTY*<br>University Pierre et Marie Curie Paris, France

*Corresponding author: Philippe Sainty, University Pierre et Marie Curie Paris, France. Tel: 0145094122, E-mail: psainty. math@gmail.com

Citation: Philippe Sainty (2023) About the strong EULER-GOLDBACH conjecture. J. Math. Stat. Anal. 5: 101


#### Abstract

In this paper, a "local" algorithm is determined for the construction of two recurrent sequences of positive primes $\left(U_{2 n}\right)$ and $\left(V_{2 n}\right),\left(\left(U_{2 n}\right)\right.$ dependent on $\left.\left(V_{2 n}\right)\right)$, such that for each integer $\mathrm{n} \geq 2$, their sum is equal to 2 n . To form this, a third sequence of primes $\left(W_{2 n}\right)$ is defined for any integer $n \geq 3$ by: $W_{2 n}=\operatorname{Sup}(\mathrm{p} \in \mathcal{P}: \mathrm{p} \leq 2 n-3)$, where $\mathcal{P}$ is the infinite set of primes. Goldbach's conjecture has been proved for all even integers $2 n$ between 4 and $4.10^{18}$. In the table of terms of Goldbach sequences given in appendix 10 , values of the order of $2 \mathrm{n}=10^{1000}$ are reached.This "ascent and descent " algorithm proves Goldbach's conjecture ; an analogous proof by recurrence is established and an increase of $U_{2 n}$ by $0.7(\ln (2 n))^{2.2}$ is established. Moreover, the Lagrange-Lemoine-Levy conjecture and its generalization, the Bezout-Goldbach conjecture, are proven by the same type of procedure.

Keywords: Prime numbers, prime number theorem, weak and strong Goldbach conjectures, Bertrand-Chebyshev theorem, gaps between consecutive primes, Lagrange-Lemoine-Levy conjecture, Bezout-Goldbach conjecture.


## 1 Background

Number theory, "the queen of mathematics" deals with structures and properties defined on integers and primes (see Euclid [11], Hadamard [13], Hardy \& Wright [14], Landau [20]). Numerous problems have been raised and conjectures made, the statements of which are often simple but very dificult to prove. These main components include:

## Elementary arithmetic

* Determination and properties of primes.
* Operations on integers (basic operations, congruence, gcd, lcm, $\qquad$ .).
* Decomposition of integers into products or sums of primes (fundamental theorem of arithmetic, decomposition of large numbers, cryptography, and Goldbach's conjecture) .


## Analytical number theory :

* The Riemann hypothesis.
* Distribution of primes (Prime number theorem, Hadamard [13], De la Vallée-Poussin [33], Littlewood [23] and Erdos [10] ).
* Gaps between consecutive primes, (Bombieri \& Davenport, [3], Cramer [8], Baker, Harmann, Iwaniec \& Pintz [4], [5],[18], Granville [12], Shanks [27], Tchebychev [32] and Zhang [36]).

Algebraic, probabilistic, combinatorial and algorithmic number theories.

* Modular arithmetic, diophantine approximations, equations.
* Arithmetic functions and algebraic geometry.


## 2 Definitions, notations and reminders

(2.1) The integers $n, k, p, q, r$, $\qquad$ are always positive.
(2.2) Let $\mathcal{P}$ the infinite set of positive primes (called simply primes) :

$$
\begin{aligned}
& \mathcal{P}=\left\{p_{k}\left(\mathrm{k} \in \mathrm{IN}^{*}\right): \mathrm{p}_{\mathrm{k}} \text { is the kth positive prime } ;\left(\mathrm{p}_{\mathrm{k}}<\mathrm{p}_{\mathrm{k}+1} \text { and } \lim p_{k}=+\infty\right)\right\} \\
& \qquad\left(p_{1}=2 ; p_{2}=3 ; p_{3}=5 ; p_{4}=7 ; p_{5}=11 ; p_{6}=13 ; \ldots \ldots \ldots\right)
\end{aligned}
$$

(2.3) The writing of large numbers (see appendix 10 ) is simplified using the following constants :
a) $\mathrm{M}=10^{9}$
b) $\mathrm{R}=4.10^{18}$
c) $\mathrm{G}=10^{100}$
d) $\mathrm{S}=10^{500}$
e) $\mathrm{T}=10^{1000}$
(2.4) $\ln (x)$ denotes the neperian logarithm of the strictly positive real $x,(x>0)$.
(2.5) Let $\left(W_{2 n}\right)$ be the sequence of primes defined by:
(2.5.1) For any integer $\mathrm{n} \geq 3$,

$$
W_{2 n}=\operatorname{Sup}(\mathrm{p} \in \mathcal{P}: \mathrm{p} \leq 2 \mathrm{n}-3)
$$

(2.6) Any sequence denoted by $\left(G_{2 n}\right)=\left(U_{2 n} ; V_{2 n}\right)$ verifying the property:
"For any integer $\mathrm{n} \geq 2, U_{2 n}$ and $V_{2 n}$ are primes and $U_{2 n}+V_{2 n}=2 \mathrm{n}$ ", is called a Goldbach sequence.
(2.7) Iwaniec \& Pintz [18] have shown that for any integer $n \in \mathbb{N}+3$, there is always a prime between $n-n^{23 / 42}$ and $n$.

Baker \& Harman [4], [5] concluded that for any sufficiently large integer $n$ there is a prime in the interval [ $\left.n ; n+o\left(n^{0.525}\right)\right]$. Thus this results provides an increase of the gap between two consecutive primes $p_{k}$ and $p_{k+1}$ of the form :
(2.7.1) $\forall \varepsilon>0, \exists k_{\varepsilon} \in \mathbb{N}^{*} / \forall \mathrm{k} \in \mathbb{N}^{*},\left(\mathrm{k}>k_{\varepsilon}\right), \quad \quad p_{k+1}-p_{k}<\varepsilon . p_{k}{ }^{0.525}$
(2.8) According to the Cramer-Maier-Nicely conjecture [1], [3], [8], [12], [24], [25], for any real c $>2$, for any integer $\mathrm{k} \geq 500$,

$$
\begin{equation*}
p_{k+1}-p_{k} \leq 0.7\left(\ln \left(p_{k}\right)\right)^{c} \quad(\text { with probability one }) . \tag{2.8.1}
\end{equation*}
$$

## 3 Introduction

Chen [6], Hardy \& Littlewood [15], Hegfollt [16], Ramaré \& Saouter [26], Tao [31], Tchebychev [32] and Vinogradov [34] have taken important steps and obtained promising results on Goldbach's conjecture.
Indeed, Helfgott \& Platt proved Goldbach's weak conjecture in 2013. Silva, Herzog \& Pardi [29] held the record for calculating the terms of Goldbach sequences after determining pairs of primes $\left(U_{2 n} ; V_{2 n}\right)$ verifying :

$$
\begin{equation*}
\text { For any integer } \mathrm{n},\left(4 \leq 2 \mathrm{n} \leq 4.10^{18}\right):\left(U_{2 n}+V_{2 n}=2 \mathrm{n}\right) \tag{3.1}
\end{equation*}
$$

In previous research work, there is no explicit construction of recurrent sequences of Goldbach primes of the form :

$$
\left(G_{2 n}\right)=\left(U_{2 n} ; V_{2 n}\right) \text { satisfying for any integer } \mathrm{n} \geq 2 \text { the equality : }\left(U_{2 n}+V_{2 n}=2 \mathrm{n}\right)
$$

In this article, two sequences of primes are developed using a simple and efficient algorithm to compute for any integer $\mathrm{n} \geq 3$ by successive iterations any term $U_{2 n}^{2 \mathrm{n}}$ and $V_{2 n}^{2 \mathrm{n}}$ of a Goldbach sequence. Using Maxima scientific software on a personal computer, Silva's record is broken, and the values $2 \mathrm{n}=10^{500}$ and even $2 \mathrm{n}=10^{1000}$ are reached. The proof of Goldbach's conjecture can be established on the same principle, using reasoning by recurrence. Moreover, the Lagrange-Lemoine-Lévy conjectures [9], [17], [19], [24], [25], [30], [35] and its generalization, the Bezout-Goldbach conjecture are validated. Using case disjunction reasoning, we construct two recurrent sequences of primes $\left(V_{2 n}\right)$ and $\left(U_{2 n}\right)$ according to the sequence $\left(\mathrm{W}_{2 \mathrm{n}}\right)$ by the following process. For any integer $\mathrm{n} \geq 2$,

$$
\begin{equation*}
\left(U_{4}=2 ; V_{4}=2\right) \tag{3.2}
\end{equation*}
$$

Let n be an integer, $(\mathrm{n} \geq 3)$ :
1.Either, $\left(2 \mathrm{n}-W_{2 n}\right)$ is a prime, then $U_{2 n}$ and $V_{2 n}$ are defined directly in terms of $W_{2 n}$.
$\underline{\text { 2. Either, }}\left(2 \mathrm{n}-W_{2 n}\right)$ is a composite number, then $V_{2 n}$ and $U_{2 n}$ are defined from the preceding terms of the sequence $\left(G_{2 n}\right)$.

## 4 Methodology

To determine pairs of primes that verify Goldbach's conjecture, three sequences of primes $\left(W_{2 n}\right),\left(\mathrm{V}_{2 n}\right),\left(U_{2 n}\right)$ are defined and verify the following properties :
(4.1) $\lim V_{2 n}=+\infty$.
(4.2) For any integr $\mathrm{n} \geq 2, V_{2 n}$ is defined as a function of $W_{2 n}=\operatorname{Sup}(\mathrm{p} \in \mathrm{P}: \mathrm{p} \leq 2 \mathrm{n}-3)$.
(4.3) $\left(W_{2 n}\right)$ is an increasing sequence that contains all primes except $p_{1}=2$.
(4.4) $\lim W_{2 n}=+\infty$.
(4.5) $\left(U_{2 n}\right)$ is a complementary sequence of negligible primes with respect to $2 \mathrm{n},\left(U_{2 n} \ll 2 \mathrm{n}\right)$.
(4.6) For any integer $n \geq 3$,

If $\left(2 \mathrm{n}-W_{2 n}\right)$ is a prime " special case ", then $V_{2 n}$ and $U_{2 n}$ are defined by :

$$
\begin{equation*}
V_{2 n}=W_{2 n} \text { and } U_{2 n}=2 \mathrm{n}-W_{2 n} \tag{4.7}
\end{equation*}
$$

Otherwise, if ( $2 \mathrm{n}-W_{2 n}$ ) is a composite number " general case ",
we use the previous terms of the sequence $\left(G_{2 n}\right)$. So we look for an integer k to obtain two terms $U_{2(n-k)}$ and $V_{2(n-k)}$ satisfying the following conditions :

$$
\begin{align*}
& U_{2(n-k)}, \quad V_{2\left(n^{-} k\right)} \text { and } U_{2(n-k)}+2 \mathrm{k} \text { are primes } U_{2(n-k)}+V_{2\left(n^{-} k\right)}=2(\mathrm{n}-\mathrm{k})  \tag{4.8}\\
& \text { (which is always possible ; see the proof in Theorem 5). }
\end{align*}
$$

Thus, by setting :

$$
\begin{equation*}
V_{2 n}=V_{2(n-k)} \text { and } U_{2 n}=U_{2(n-k)}+2 \mathrm{k} \tag{4.9}
\end{equation*}
$$

two new primes $V_{2 n}$ and $U_{2 n}$ satisfying (4.10) are generated.

$$
\begin{equation*}
U_{2 n}+V_{2 n}=2 \mathrm{n} \tag{4.10}
\end{equation*}
$$

This process is then repeated, incrementing $n$ by one unit : $n \rightarrow n+1$ ).

## 5 Theorem

There exists a recurrent Goldbach sequence of primes $\left(G_{2 n}\right)=\left(U_{2 n} ; V_{2 n}\right)$ satisfying for any integer $\mathrm{n} \geq 2$ :

$$
U_{2 n} \text { and } V_{2 n} \text { are primes and their sum is equal to } 2 \mathrm{n} \text {. }
$$

$$
\begin{equation*}
\left(\mathrm{U}_{2 n}, V_{2 n} \in \mathcal{P} \quad \text { and } U_{2 n}+V_{2 n}=2 \mathrm{n}\right) . \tag{5.1}
\end{equation*}
$$

An algorithm can be used to explicitly compute any term $U_{2 n}$ and $V_{2 n}$.

## Proof of Theorem 5

## First Method :

For any integer $\mathrm{n} \geq 3$,
If $\left(2 \mathrm{n}-W_{2 n}\right)$ is a prime, then $V_{2 n}$ and $U_{2 n}$ are defined by:

$$
\begin{equation*}
V_{2 n}=W_{2 n} \quad \text { and } \quad U_{2 n}=2 \mathrm{n}-W_{2 n} \tag{5.3}
\end{equation*}
$$

Otherwise,
if $\left(2 \mathrm{n}-W_{2 n}\right)$ is a composite number,
we use the previous terms of the sequence $\left(G_{2 n}\right)$ to determine $\left(U_{2 n}\right)$ and $\left(V_{2 n}\right)$.
For any integer $q$ such that: $(1 \leq \mathrm{q} \leq \mathrm{n}-3)$, we have : $3 \leq U_{2(n-q)} \leq \mathrm{n}$.
For any integer k such that $(4 \leq 2 \mathrm{k} \leq \mathrm{n}-1)$, there are two primes $p_{m}$ and $p_{r},(\mathrm{~m}>\mathrm{r})$ in the interval $[4 ; n]$ such that :

$$
\begin{equation*}
p_{m}-p_{r}=2 \mathrm{k} \tag{5.4}
\end{equation*}
$$

(see Bombieri \& Davenport [1], Cramer [8], Iwaniec \& Pintz [18] , Tchebychev [32]).
Then there is an integer $k$ verifying, $(4 \leq 2 \mathrm{k} \leq \mathrm{n}-3)$ such that:

$$
\begin{equation*}
R_{2 n}=U_{2(n-k)}+2 \mathrm{k} \text { is a prime } \tag{5.5}
\end{equation*}
$$

The smallest integer k denoted $k_{n}$ such that $R_{2 n}$ is a prime is chosen. So let :

$$
\begin{align*}
& U_{2 n}=U_{2\left(n-k_{n}\right)}+2 k_{n} \text { and } \mathrm{V}_{2 \mathrm{n}}=V_{2\left(n-k_{n}\right)}  \tag{5.6}\\
& \text { (These two terms are primes) }
\end{align*}
$$

In the previous steps two primes, $U_{2\left(n-k_{n}\right)}$ and $V_{2\left(n-k_{n}\right)}$ whose sum is equal to $2\left(\mathrm{n}-\boldsymbol{k}_{n}\right)$ were determine

$$
\begin{equation*}
U_{2\left(n-k_{n}\right)}+V_{2\left(n-k_{n}\right)}=2\left(\mathrm{n}-k_{n}\right) \tag{5.7}
\end{equation*}
$$

By adding the term $k_{n}$ to each member of the equality (5.6), it follows :

$$
\begin{array}{ll} 
& U_{2\left(n-k_{n}\right)}+2 k_{n}+V_{2\left(n-k_{n}\right)}=2\left(\mathrm{n}-k_{n}\right)+2 k_{n} \\
\Leftrightarrow & \left\{U_{2\left(n-k_{n}\right)}+2 k_{n}\right\}+V_{2\left(n-k_{n}\right)}=2 \mathrm{n} \\
\Leftrightarrow & U_{2 n}+V_{2 \mathrm{n}}=2 \mathrm{n} \tag{5.10}
\end{array}
$$

Finally, for any integer $\mathrm{n} \geq 3$, this algorithm determines two sequences of primes $\left(U_{2 \mathrm{n}}\right)$ and $\left(V_{2 \mathrm{n}}\right)$ verifying Goldbach's conjecture.

## Second Method :

The demonstration can be made using the following strong recurrence principle.
Let $\mathrm{P}(\mathrm{n})$ be the following property defined for any integer $\mathrm{n} \geq 2$ by :
$\mathrm{P}(\mathrm{n})$ : "For any integer p satisfying: $(2 \leq \mathrm{p} \leq \mathrm{n})$, there exists two primes $U_{2 p}$ and $V_{2 p}$ and such their sum is

$$
\text { equal to } 2 \mathrm{p}:\left(U_{2 p}+V_{2 p}=2 \mathrm{p}\right) "
$$

Let us show by strong recurrence that $\mathrm{P}(\mathrm{n})$ is true for any integer $\mathrm{n} \geq 2$.
a) $\mathrm{P}(2)$ is true : it suffices to choose $U_{4}=V_{4}=2$.
b) Let us show that the property $\mathrm{P}(\mathrm{n})$ is hereditary: (i.e for any integer $\mathrm{n} \geq 2 \mathrm{P}(\mathrm{n}) \Rightarrow P(\mathrm{n}+1)$ )

Assume property $\mathrm{P}(\mathrm{n})$ is true,
If $\left(2\left(\mathrm{n}+1-W_{2(n+1)}\right)\right.$ is a prime, then $V_{2(n+1)}$ and $U_{2(n+1)}$ are defined by :

$$
\begin{equation*}
V_{2}\left(n^{+}{ }_{1}\right)=W_{2}\left(n^{+}{ }_{1}\right) \quad \text { and } \quad U_{2}\left(n^{+}{ }_{1}\right)=2(\mathrm{n}+1)-W_{2}\left(n^{+}{ }_{1}\right) \tag{5.11}
\end{equation*}
$$

Otherwise, if $\left(2(\mathrm{n}+1)-W_{2(n+1)}\right)$ is a composite number,
there exists an integer k to obtain two terms $U_{2(n+1-k)}$ and $V_{2(n+1-k)}$ satisfying the following conditions :

$$
\begin{align*}
& U_{2(n+1-k)}, V_{2(n+1-k)} \text { and } U_{2(n+1-k)}+2 \mathrm{k} \text { are primes. }  \tag{5.12}\\
& U_{2(n+1-k)}+V_{2(n+1-k)}=2(\mathrm{n}+1-\mathrm{k}) \quad(\text { which is always possible } ; \text { see first method }) .
\end{align*}
$$

Thus, by setting :

$$
\begin{equation*}
V_{2(n+1)}=V_{2(n+1-k)} \quad \text { and } U_{2(n+1)}=U_{2(n+1-k)}+2 \mathrm{k} \tag{5.13}
\end{equation*}
$$

two new primes $V_{2(n+1)}$ and $U_{2(n+1)}$ satisfying $\left.U_{2(n+1)}+V_{2(n+1)}=2(\mathrm{n}+1)\right)$ are generated. It follows that $\mathrm{P}(\mathrm{n}+1)$ is true, then the property $\mathrm{P}(\mathrm{n})$ is hereditary : $(\mathrm{P}(\mathrm{n})=>\mathrm{P}(\mathrm{n}+1))$.

Therefore, for any integer $\mathrm{n} \geq 2$ the property $\mathrm{P}(\mathrm{n})$ is true ; it follows that :
$\forall \mathrm{n} \geq 2$ there are two primes $U_{2 n}$ and $V_{2 n}$ and such their sum is $2 \mathrm{n}:\left(U_{2 n}+V_{2 n}=2 \mathrm{n}\right)$

## 6 Lemma

The sequence $\left(U_{2 n}\right)$ verifies the following estimation : For any integer $\mathrm{n} \geq 65$,

$$
\begin{equation*}
U_{2 n} \leq(2 n)^{0.55} \tag{6.1}
\end{equation*}
$$

## Proof of Lemma 6

According to the programm 9.2 and appendix 10, the estimate (6.1) is verified for any integer n such that : ( $65 \leq \mathrm{n} \leq 2000$ )
.For any integer $\mathrm{n}>2000$, the proof is established by recurrence. For this purpose, let $P_{1}(\mathrm{n})$ be the following property :
(6.2) $P_{1}(\mathrm{n})$ : " There exists a strictly increasing sequence of positive numbers $\left(C_{n}\right)$ such that : $U_{2 n} \leq C_{n}(2 n)^{0.525}$ ".
a) $P_{1}(2000)$ is true according to program 9.2 and the table in appendix 10 .
b) For any integer $\mathrm{n} \geq 2000$, let us show that $P_{1}(\mathrm{n})$ is hereditary, (i.e $P_{1}(\mathrm{n}) \Rightarrow P_{1}(\mathrm{n}+1)$ )

Assume that $P_{1}(\mathrm{n})$ is true : then,
If ( $\left.2(\mathrm{n}+1)-W_{2(n+1)}\right)$ is a prime, then $V_{2(n+1)}$ and $U_{2(n+1)}$ are defined by :

$$
\begin{equation*}
V_{2}\left(n^{+}{ }_{1}\right)=W_{2}\left(n^{+}{ }_{1}\right) \quad \text { and } \quad U_{2}\left(n^{+}{ }_{1}\right)=2(\mathrm{n}+1)-W_{2}\left(n^{+}{ }_{1}\right) \tag{6.3}
\end{equation*}
$$

According to the results in [4], [5], [18] there is a constant $\mathrm{K},(0<\mathrm{K}<1) /$

$$
2(\mathrm{n}+1)-\mathrm{K}(2(n+1))^{0.525}<W_{2(n+1)}<2(\mathrm{n}+1)
$$

$$
\Rightarrow \quad U_{2(n+1)}<\mathrm{K}(2(n+1))^{0.525}
$$

$$
\Rightarrow \quad U_{2(n+1)} \leq C_{n+1}(2(n+1))^{0.525}
$$

Otherwise, if $\left(2(\mathrm{n}+1)-W_{2(n+1)}\right)$ is a composite number,

$$
\begin{array}{cc} 
& \exists \mathrm{p} \in \mathbb{N}^{*} / U_{2(n+1)}=U_{2(n+1-p)}+2 \mathrm{p}  \tag{6.4}\\
U & <
\end{array}
$$

According to [4], [5], [18], the smallest integer $p$ defined in (6.4) verifies:

$$
\begin{equation*}
2 \mathrm{p}<\mathrm{K} U_{2(n+1-p)}^{0.525} \tag{6.5}
\end{equation*}
$$

and

$$
U_{2(n+1-p)}<C_{n+1-p}(2(n+1-p))^{0.525}
$$

It follows :

$$
U_{2(n+1)}<\mathrm{K} C_{n+1-p}^{0.525}(2(n+1-p))^{0.275625}+C_{n+1-p}(2(n+1-p))^{0.525}
$$

Then,
(6.6)

$$
U_{2(n+1)}<C_{n+1} \cdot(2(n+1))^{0.525}
$$

and, by setting: $C_{n}=(2 n)^{0.025}$, it follows :

$$
\begin{equation*}
U_{2(n+1)}<(2(n+1))^{0.55} \tag{6.7}
\end{equation*}
$$

$P_{1}(\mathrm{n}+1)$ is true then $P_{1}(\mathrm{n})$ is hereditary. So for any integer $\mathrm{n} \geq 2000$, the property $P_{1}(\mathrm{n})$ is true.
(The inequality (6.7) is verified with the aid of the scientific software Maple studying the functions of the type :

$$
\left.\mathrm{f}: \mathrm{x} \rightarrow \mathrm{a} x^{0.275625}+\mathrm{b} x^{0.525} \text { increased by } \mathrm{g}: \mathrm{x} \rightarrow x^{0.55},(\mathrm{a}, \mathrm{~b}>0)\right)
$$

* Remark : A more precise mark-up can be obtained using the Cippola or Axler frames. [7], [2].


## 7 Theorem

For any integer $\mathrm{n} \geq 3$, it is easy to check :
$7.1\left(W_{2 n}\right)$ is a positive increasing sequence of primes.
$7.2\left\{W_{2 n}: \mathrm{n} \in \mathrm{IN}^{*}\right\} \cup\{2\}=\mathcal{P}$
$7.3 \lim W_{2 n}=+\infty$
$7.4\left(V_{2 n}\right)$ is a sequence of primes.
The following results are validated with probability one:
$7.5 \mathrm{n} \leq V_{2 n} \leq W_{2 n}$
$7.63 \leq 2 n-W_{2 n} \leq U_{2 n} \leq \mathrm{n}$
$7.7 \lim V_{2 n}=+00$

## Proof of Theorem 7

7.1 For any integer $\mathrm{n} \geq 2$ let $A_{n}$ be the following set: $A_{n}=\left\{p_{k} \in \mathcal{P}: p_{k} \leq 2 \mathrm{n}-3\right\}$.
$A_{n} \subset A_{n+1}$ therefore, $W_{2 n} \leq W_{2(n+1)}$, so the sequence $\left(W_{2 n}\right)$ is a positive increasing sequence of primes.
7.2 Any prime except $p_{1}=2$ is odd, hence the result.
$7.3 \lim W_{2 n}=\lim p_{n}=+o o$.
7.4 By definition $V_{2 n}=W_{2 n}$ or there exits an integer $\mathrm{k} \leq \mathrm{n}-2$ such that: $V_{2 n}=V_{2(n-k)}$; so, by reccurence the terms of the sequence $\left(V_{2 n}\right)$ are primes ; moreover, there exists a strictly increasing sub-sequence $\left(V_{2 n}^{\prime}\right)$ of $\left(V_{2 n}\right)$ verifying $\lim \left(V_{2 n}^{\prime}\right)=+$ oo.
7.5 According to Lemma 6 , for any integer $\mathrm{n} \geq 65, U_{2 n}<(2 n)^{0.55}$; therefore,

$$
U_{2 n}<(2 n)^{0.55}<\mathrm{n} \quad \text { and } \quad V_{2 n}=2 \mathrm{n}-U_{2 n}>2 \mathrm{n}-\mathrm{n}>\mathrm{n} .
$$

For any integer $\mathrm{n} /(3 \leq \mathrm{n} \leq 65)$, verification is carried out according to the program in 9.2 and the table in appendix 10 .
7.6 According to 7.5,

$$
\begin{gathered}
\mathrm{n} \leq V_{2 n} \Rightarrow U_{2 n}=2 \mathrm{n}-V_{2 n} \leq 2 \mathrm{n}-\mathrm{n} \leq \mathrm{n} ; \text { moreover, } \\
V_{2 n} \leq W_{2 n} \Rightarrow 2 \mathrm{n}-W_{2 n} \leq 2 \mathrm{n}-V_{2 n}=U_{2 n} .
\end{gathered}
$$

7.7 By 7.5, for any integer $\mathrm{n} \geq 2, \mathrm{n} \leq V_{2 n}$, so $\lim \left(V_{2 n}\right)=+o o$.

## 8 Remarks

8.1 There are infinitely many integers $n$ such that: $U_{2 n}=3,5,7$ or 11 .
$8.2 V_{2 n} \sim 2 n \quad$ for $(\mathrm{n} \rightarrow+\infty)$.
8.3 For any sufficiently large integer $\mathrm{n},(\mathrm{n} \geq 5000) \mathrm{:}_{2} \quad{ }_{2 n} U_{2 n} \ll V_{2 n} \quad$ and $\quad \lim \left(\mathrm{U}_{2 \mathrm{n}} / \mathrm{V}_{2 \mathrm{n}}\right)=0$.
8.4 The smallest integer n such that : $U_{2 n} \neq 2 \mathrm{n}-W_{2 n}$ is obtained for $\mathrm{n}=49$ and $G_{98}=(79 ; 19)$.
(This type of term increases in the Goldbach sequence $\left(\mathrm{G}_{2 n}\right)$ as n increases, in the sense of the Schnirelmann density, and there are an infinite number of them; their proportion per interval can be computed using the results given in [28]).
8.5 If $\mathrm{q} \geq 5$ is an odd integer, we could generalize this algorithm with sequences $\left(W^{\prime}{ }_{2 n}\right)$ defined by :
(8.6.1) $\quad \forall \mathrm{n} \in \mathbb{N},(\mathrm{n} \geq \mathrm{q}+1.5)$

$$
W^{\prime}{ }_{2 n}=\operatorname{Sup}(\mathrm{p} \in \mathcal{P} \quad: \mathrm{p} \leq 2 \mathrm{n}-\mathrm{q}) .
$$

Other Goldbach sequences $\left(G^{\prime}{ }_{2 n}\right)$ independent of $\left(G_{2 n}\right)$ are thus generated.
8.6 The sequence $\left(G_{2 n}\right)$ is extremal in the sense that for any integer $\mathrm{n} \geq 2, V_{2 n}$ and $U_{2 n}$ are the largest and smallest possible primes such that: $U_{2 n}+V_{2 n}=2 \mathrm{n}$.
8.7 The Cramer-Maier-Nicely conjecture [8], [ 12 ], [17 ], [19], [21], [22], [24], [25], [30] is verified with probability one. It leads to the following mark-up : For any integer $p \geq 500$,

$$
\begin{equation*}
U_{2 p} \leq 0.7(\ln (2 \mathrm{p}))^{(2.2-1 / \mathrm{p})} \quad(\text { with probability one }) \tag{8.7.1}
\end{equation*}
$$

The proof is similar to that of Lemma 6, using the same type of reasoning by recurrence, validated by the study of functions of the type: $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{ag}(\mathrm{x})+\mathrm{b}\left(\ln (\mathrm{g}(\mathrm{x}))^{c}(\mathrm{a}, \mathrm{b}>0),(\mathrm{c}>2)\right.$, ( with $\left.\mathrm{g}: \mathrm{x} \rightarrow 0.7(\ln (x))^{(c-1 / \mathrm{x})}\right)$ and $\mathrm{h}: \mathrm{x} \rightarrow 0.7(\ln (x))^{(2.2-1 / \mathrm{x})}$ using Maple software.

* Remark : A better mark-up can be obtained via [24], [25], [27] .
8.8 According to Bombieri [3] and using the same method as in the proof of Lemma 6 , we obtain the following estimate of $U_{2 n}$ :

$$
\begin{equation*}
\forall \varepsilon>0, \quad U_{2 n}=\mathrm{O}\left((\ln (2 n))^{1.3++^{\varepsilon}}\right), \tag{8.8.1}
\end{equation*}
$$

(on average).

## 9 Algorithm

## Algorithm written in natural language

## Inputs

Input four integer variables : $\mathrm{k}, \mathrm{N}, \mathrm{n}, \mathrm{P}$.
Input : $p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, \ldots \ldots, p_{N}$ the first N primes. :
Input: $\mathrm{n}=3$.
Input : $\mathrm{P}=\mathrm{M}, \mathrm{R}, \mathrm{G}, \mathrm{S}$ or T as indicated in paragraph 2.

## Algorithm body

A) Compute: $W_{2 n}=\operatorname{Sup}(\mathrm{p} \in \mathcal{P}: \mathrm{p} \leq 2 \mathrm{n}-3)$

If $T_{2 n}=\left(2 \mathrm{n}-W_{2 n}\right)$ is a prime,
Let:
(9.1.1) $\quad U_{2 n}=T_{2 n}$ and $V_{2 n}=W_{2 n}$
otherwise ,
B) If $T_{2 n}$ is a composite number, let : $\mathrm{k}=1$.
B.1) While $U_{2(n-k)}+2 \mathrm{k}$ is a composite number,
assign to k the value : $\mathrm{k}+1(\mathrm{k} \rightarrow \mathrm{k}+1)$.
Return to B1)
End While .
Assign to k the value $:\left(\mathrm{k} \rightarrow k_{n}\right)$
(9.1.2) Let:

$$
U_{2 n}=U_{2\left(n-k_{n}\right)}+2 k_{n} \text { and } V_{2 n}=V_{2\left(n-k_{n}\right)}
$$

Assign to n the value $\mathrm{n}+1,(\mathrm{n} \rightarrow n+1)$ and return to A$)$
End :
Outputs for integers less than $10^{4:}: \operatorname{Print}\left(2 \mathrm{n}=\ldots ; 2 \mathrm{n}-3=\ldots ; W_{2 n}=\ldots ; T_{2 n}=\ldots ; V_{2 n}=\ldots ; U_{2 n}=\ldots\right.$ ).
Outputs for large integers : Print ( $2 \mathrm{n}-\mathrm{P}=\ldots ; 2 \mathrm{n}-3-\mathrm{P}=\ldots ; W_{2 n}-\mathrm{P}=\ldots ; T_{2 n}=\ldots . \ldots V_{2 n}-P=\cdots ; U_{2 n}=\ldots$ ).
9.2 Program written with Maxima software for $2 n=10^{500}$
r:0; n1:10**500 ; for n:5*10**499+10000 thru $5^{*} 10 * * 499+10010$ do
( k:1, a:2*n, c:a-3, test:0, b:prev_prime(a-1),
if primep (a-b)
then print(a-n1,c-n1,b-n1,a-b,b-n1,a-b)
otherwise ( r:r+1,
while test $=0$ do
(if ( primep(c) and primep(a-c))
then ( test:1, print(a-n1,a-n1-3,b-n1,a-b,c-n1,a-c," Ret ",r))
else (test.0, c.c-2*k ))) ),

## 10 Appendix

Application of Algorithm 9:
Table of $U_{2 n}$ and $V_{2 n}$ terms of the Goldbach sequence $\left(G_{2 n}\right)$ computed from program $9.2,\left(2 \leq 2 n \leq 10^{1000}+4020\right)$.
The "** sign" in the table below indicates the results given by the algorithm 9 in case $B$ ) of return to the previous terms of the sequence $\left(G_{2 n}\right)$. WATCH OUT ! For large integers $\mathrm{n}\left(2 \mathrm{n}>10^{9}\right)$, to simplify the display of large numbers, the results are entered as follows : $2 \mathrm{n}-\mathrm{P},(2 \mathrm{n}-3)-\mathrm{P}, \mathrm{W}_{2 \mathrm{n}}-\mathrm{P}, \mathrm{T}_{2 n}, \mathrm{~V}_{2 n}-\mathrm{P}$ and $\mathrm{U}_{2 n}$ with, $\mathrm{P}=\mathrm{M}, \mathrm{R}, \mathrm{G}, \mathrm{S}$, or T constants defined in (2.3).

| 2n | 2n-3 | $W_{2 n}$ | $\mathrm{T}_{2 \mathrm{n}} \mathbf{2 n}-\mathrm{W}_{2 \mathrm{n}}$ | $\mathrm{V}_{2 \mathrm{n}}$ | $\mathbf{U}_{2 \mathrm{n}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | x | x | 2 | 2 |
| 6 | 3 | 3 | 3 | 3 | 3 |
| 8 | 5 | 5 | 3 | 5 | 3 |
| 10 | 7 | 7 | 3 | 7 | 3 |
| 12 | 9 | 7 | 3 | 7 | 5 |
| 14 | 11 | 11 | 3 | 11 | 3 |
| 16 | 13 | 13 | 3 | 13 | 3 |
| 18 | 15 | 13 | 5 | 13 | 5 |
| 20 | 17 | 17 | 3 | 17 | 3 |
| 22 | 19 | 19 | 3 | 19 | 3 |
| 24 | 21 | 19 | 5 | 19 | 5 |
| 26 | 23 | 23 | 3 | 23 | 3 |
| 28 | 25 | 23 | 5 | 23 | 5 |
| 30 | 27 | 23 | 7 | 23 | 7 |
| 32 | 29 | 29 | 3 | 29 | 3 |
| 34 | 31 | 31 | 3 | 31 | 3 |
| 36 | 33 | 31 | 5 | 31 | 5 |
| 38 | 35 | 31 | 7 | 31 | 7 |
| 40 | 37 | 37 | 3 | 37 | 3 |
|  |  |  |  |  |  |
| 80 | 77 | 73 | 7 | 73 | 7 |
| 82 | 79 | 79 | 3 | 79 | 3 |
| 84 | 81 | 79 | 5 | 79 | 5 |
| 86 | 83 | 83 | 3 | 83 | 3 |
| 88 | 85 | 83 | 5 | 83 | 5 |
| 90 | 87 | 83 | 7 | 83 | 7 |
| 92 | 89 | 89 | 3 | 89 | 3 |
| 94 | 91 | 89 | 5 | 89 | 5 |
| 96 | 93 | 89 | 7 | 89 | 7 |
| **98 | 95 | 89 | 9 | 79 | 19 |
| 100 | 97 | 97 | 3 | 97 | 3 |
| 120 | 117 | 113 | 7 | 113 | 7 |
| **122 | 119 | 113 | 9 | 109 | 13 |
| 124 | 121 | 113 | 11 | 113 | 11 |
| 126 | 123 | 113 | 13 | 113 | 13 |
| **128 | 125 | 113 | 15 | 109 | 19 |


| 130 | 127 | 127 | 3 | 127 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 132 | 129 | 127 | 5 | 127 | 5 |
| 134 | 131 | 131 | 3 | 131 | 3 |
| 136 | 133 | 131 | 5 | 131 | 5 |
| 138 | 135 | 131 | 7 | 131 | 7 |
| 140 | 137 | 137 | 3 | 137 | 3 |
|  |  |  |  |  |  |
| **500 | 497 | 491 | 9 | 487 | 13 |
| 502 | 499 | 499 | 3 | 499 | 3 |
| 504 | 501 | 499 | 5 | 499 | 5 |
| 506 | 503 | 503 | 3 | 503 | 3 |
| 508 | 505 | 503 | 5 | 503 | 5 |
| 510 | 507 | 503 | 7 | 503 | 7 |
|  |  |  |  |  |  |
| 1000 | 997 | 997 | 3 | 997 | 3 |
| 1002 | 999 | 997 | 5 | 997 | 5 |
| 1004 | 1001 | 997 | 7 | 997 | 7 |
| **1006 | 1003 | 997 | 9 | 983 | 23 |
| 1008 | 1005 | 997 | 11 | 997 | 11 |
| 1010 | 1007 | 997 | 13 | 997 | 13 |
| 1012 | 1009 | 1009 | 3 | 1009 | 3 |
| 1014 | 1011 | 1009 | 5 | 1009 | 5 |
| 1016 | 1013 | 1013 | 3 | 1013 | 3 |
| 1018 | 1015 | 1013 | 5 | 1013 | 5 |
|  |  |  |  |  |  |
| 10002 | 9999 | 9973 | 29 | 9973 | 29 |
| 10004 | 10001 | 9973 | 31 | 9973 | 31 |
| **10006 | 10003 | 9973 | 33 | 9923 | 83 |
| **10008 | 10005 | 9973 | 35 | 9967 | 41 |
| 10010 | 10007 | 10007 | 3 | 10007 | 3 |
| 10012 | 10009 | 10009 | 3 | 10009 | 3 |
| 10014 | 10011 | 10009 | 5 | 10009 | 5 |
| 10016 | 10013 | 10009 | 7 | 10009 | 7 |
| **10018 | 10015 | 10009 | 9 | 10007 | 11 |
| 10020 | 10017 | 10009 | 11 | 10009 | 11 |
|  |  |  |  |  |  |
| 2n-M | (2n-3) - M | $\mathrm{W}_{2 \mathrm{n}}-\mathrm{M}$ | $\mathrm{T}_{2 \mathrm{n}}=2 \mathrm{n}-\mathrm{W}_{2 \mathrm{n}}$ | $\mathrm{V}_{2 \mathrm{n}}-\mathrm{M}$ | $\mathbf{U}_{2 \mathrm{n}}$ |
| +1000 | +997 | +993 | 7 | +993 | 7 |
| **+1002 | +999 | +993 | 9 | +931 | 71 |
| +1004 | +1001 | +993 | 11 | +993 | 11 |
| +1006 | +1003 | +993 | 13 | +993 | 13 |
| **+1008 | +1005 | +993 | 15 | +919 | 89 |


| +1010 | +1007 | +993 | 17 | +993 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| +1012 | +1009 | +993 | 19 | +993 | 19 |
| +1014 | +1011 | +1011 | 3 | +1011 | 3 |
| +1016 | +1013 | +1011 | 5 | +1011 | 5 |
| +1018 | +1015 | +1011 | 7 | +1011 | 7 |
| **+1020 | +1017 | +1011 | 9 | +931 | 89 |
| 2n-R | (2n-3) - R | $\mathrm{W}_{2 \mathrm{n}}$ - R | $\mathrm{T}_{2 \mathrm{n}}=2 \mathrm{n}-\mathrm{W}_{2 \mathrm{n}}$ | $\mathrm{V}_{2 \mathrm{n}}$ - R | $\mathrm{U}_{2 \mathrm{n}}$ |
| **+1000 | +997 | +979 | 21 | +903 | 97 |
| +1002 | +999 | +979 | 23 | +979 | 23 |
| **+1004 | +1001 | +979 | 25 | +951 | 53 |
| **+1006 | +1003 | +979 | 27 | +903 | 103 |
| +1008 | +1005 | +979 | 29 | +979 | 29 |
| +1010 | +1007 | +979 | 31 | +979 | 31 |
| **+1012 | +1009 | +979 | 33 | +951 | 61 |
| **+1014 | +1011 | +979 | 35 | +781 | 233 |
| +1016 | +1013 | +979 | 37 | +979 | 37 |
| **+1018 | +1015 | +979 | 39 | +951 | 67 |
| +1020 | +1017 | +1017 | 3 | +1017 | 3 |
|  |  |  |  |  |  |
| 2n-G | (2n-3)-G | $\mathrm{W}_{2 \mathrm{n}}$ - G | $\mathrm{T}_{2 \mathrm{n}}=2 \mathrm{n}-\mathrm{W}_{2 \mathrm{n}}$ | $\mathrm{V}_{2 \mathrm{n}}$ - G | $\mathbf{U}_{2 \mathrm{n}}$ |
| **+10000 | +9997 | +9631 | 369 | +7443 | 2557 |
| **+10002 | +9999 | +9631 | 371 | +9259 | 743 |
| +10004 | +10001 | +9631 | 373 | +9631 | 373 |
| **+10006 | +10003 | +9631 | 375 | +8583 | 1423 |
| **+10008 | +10005 | +9631 | 377 | +6637 | 3371 |
| +10010 | +10007 | +9631 | 379 | +9631 | 379 |
| **+10012 | +10009 | +9631 | 381 | +8583 | 1429 |
| +10014 | +10011 | +9631 | 383 | +9631 | 383 |
| **+10016 | +10013 | +9631 | 385 | +9259 | 757 |
| **+10018 | +10015 | +9631 | 387 | +4491 | 5527 |
| +10020 | +10015 | +9631 | 389 | +9631 | 389 |
|  |  |  |  |  |  |
| 2n-S | (2n-3)-S | $\mathrm{W}_{2 \mathrm{n}}-\mathrm{S}$ | $\mathrm{T}_{2 \mathrm{n}}=2 \mathrm{n}-\mathrm{W}_{2 \mathrm{n}}$ | $\mathrm{V}_{2 \mathrm{n}}-\mathrm{S}$ | $\mathbf{U}_{2 \mathrm{n}}$ |
| **+20000 | +19997 | +18031 | 1969 | +17409 | 2591 |
| **+20002 | +19999 | +18031 | 1971 | +17409 | 2593 |
| +20004 | +20001 | +18031 | 1973 | +18031 | 1973 |
| **+20006 | +20003 | +18031 | 1975 | +16663 | 3343 |
| **+20008 | +20005 | +18031 | 1977 | +16941 | 3067 |
| +20010 | +20007 | +18031 | 1979 | +18031 | 1979 |
| **+20012 | +20009 | +18031 | 1981 | +5674 | 14341 |
| **+20014 | +20011 | +18031 | 1983 | +4101 | 15913 |
| **+20016 | +20013 | +18031 | 1985 | +3229 | 16787 |
| +20018 | +20015 | +18031 | 1987 | +18031 | 1987 |


| ${ }^{* *}+20020$ | +20017 | +18031 | 1989 | +16941 | 3079 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2n-T | (2n-3)-T | $\mathrm{W}_{2 \mathrm{n}}-\mathrm{T}$ | $\mathrm{T}_{2 \mathrm{n}}=2 \mathrm{n}-\mathrm{W}_{2 \mathrm{n}}$ | $\mathrm{V}_{2 \mathrm{n}}$ - T | $\mathbf{U}_{2 \mathrm{n}}$ |
| **+40000 | +39997 | +29737 | 10263 | +21567 | 18433 |
| ***40002 | +39997 | +29737 | 10265 | +22273 | 17729 |
| +40004 | +40001 | +29737 | 10267 | +29737 | 10267 |
| ***40006 | +40003 | +29737 | 10269 | +21567 | 18439 |
| +40008 | +40005 | +29737 | 10271 | +29737 | 10271 |
| +40010 | +40007 | +29737 | 10273 | +29737 | 10273 |
| **+40012 | +40009 | +29737 | 10275 | +10401 | 29611 |
| **+40014 | +40011 | +29737 | 10277 | -56003 | 96017 |
| **+40016 | +40013 | +29737 | 10279 | +27057 | 12959 |
| **+40018 | +40015 | +29737 | 10281 | +25947 | 14071 |
| **+40020 | +40017 | +29737 | 10283 | +24493 | 15527 |

## 11 Perspectives and Generalizations

11.1 Other Goldbach sequences $\left(G_{2 n}^{\prime}\right)$ and $\left(G^{\prime \prime}{ }_{2 n}\right)$ independent of $\left(G_{2 n}\right)$ may be studied using the increasing sequences of primes $\left(W^{\prime}{ }_{2 n}\right)$, (see 8.5) and $\left(W^{\prime \prime}{ }_{2 n}\right)$ defined by :

For any integer $\mathrm{n} \geq 3, W^{\prime \prime}{ }_{2 n}=\operatorname{Sup}(\mathrm{p} \in \mathcal{P}: p \leq \mathrm{f}(\mathrm{n})$ ), f being a function defined on the interval $\mathrm{I}=[3 ;+\infty[$ and satisfying the following conditions:
*f is strictly increasing on the interval I,
$* \lim _{x \rightarrow+\infty} f(x)=+\infty ; \mathrm{f}(3)=3$.
$* \forall x \in I, f(x) \leq 2 \mathrm{x}-3$.
For example, one of the following functions defined on I can be selected.
a) f: $x \rightarrow a x+3-3 a ;(a \in \mathbb{R}: 0<a \leq 2)$.
b) $\mathrm{g}: \mathrm{x} \rightarrow[4 \sqrt{(3 x)}-9]$ ( $[\mathrm{x}]$ being the integer part of the real number x$)$.
c) $\mathrm{h}: x \rightarrow 6 \ln (\mathrm{x} / 3)+3$.
11.2 Using this method, it would be interesting to study the Schnirelmann density [28] of certain primes such as $3,5,7,11, \ldots . . \ldots$ in the sequence $\left(U_{2 n}\right)$ for $\mathrm{n} \in\left[K_{N} ; P_{N}\right]$ as a function of N .
11.3 It is possible to exceed the values shown in the table ( $2 \mathrm{n}=10^{1000}$ ) by optimizing this algorithm, using supercomputers and more efficients software as Maple .
11.4 Diophantine equations and conjectures of the same nature (Lagrange-Lemoine-Levy conjecture [9], [17], [19],[21],[22], [30]) can be treated using similar reasoning and algorithms.

1) To validate the Lagrange-Lemoine-Levy conjecture, we can study
the following sequences of primes $\left(W L_{2 n}\right),\left(V L_{2 n}\right)$ and $\left(U L_{2 n}\right)$ defined by :
For any integer $n \geq 3, W L_{2 n}=\operatorname{Sup}(\mathrm{p} \in \mathcal{P}: p \leq n-1)$,
a) If $T L_{2 n}=\left(2 \mathrm{n}+1-2 W L_{2 n}\right)$ is a prime, then let:

$$
V L_{2 n}=W L_{2 n} \quad \text { and } \quad U L_{2 n}=T L_{2 n}
$$

b) If $T L_{2 n}$ is a composite number, then there exists an integer $\mathrm{k},(1 \leq k \leq n-3)$ such hat : $U L_{2(n-k)}+2 \mathrm{k}$ is a prime ; then let :

$$
V L_{2 n}=V L_{2(n-k)} \text { and } U L_{2 n}=U L_{2(n-k)}+2 \mathrm{k} .
$$

2) Using the same type of reasoning, a generalized Bezout-Goldbach conjecture of the following form can be validated :
a) Let $K$ and $Q$ be two odd integers, prime to each other : for any integer $n$ such that: $(2 \mathrm{n} \geq 3(\mathrm{~K}+\mathrm{Q}))$, there exist two primes $U^{\prime \prime \prime}{ }_{2 n}$ and $V^{\prime \prime \prime}{ }_{2 n}$ verifying :

$$
\mathrm{K} \cdot U^{\prime \prime \prime}{ }_{2 n}+\mathrm{Q} \cdot V^{\prime \prime \prime}{ }_{2 n}=2 \mathrm{n} .
$$

b) Let $K$ and $Q$ be two integers of different parity, prime to each other : for any integer $n$ such that : $(2 n \geq 3(K+Q)$ ), there are two primes $U^{\prime \prime \prime}{ }_{2 n}$ and $V^{\prime \prime \prime}{ }_{2 n}$ verifying:

$$
\mathrm{K} \cdot U^{\prime \prime \prime}{ }_{2 n}+\mathrm{Q} \cdot \mathrm{~V}^{\prime \prime \prime}{ }_{2 n}=2 \mathrm{n}+1 .
$$

## 12 Conclusion

12.1 An unique recurrent and explicit Goldbach sequence $\left(G_{2 n}\right)=\left(U_{2 n} ; V_{2 n}\right)$, verifying : $\left(\forall \mathrm{n} \in \mathbb{N}+2, U_{2 n}\right.$ and $V_{2 n}$ are primes : $U_{2 n}+V_{2 n}=2 \mathrm{n}$ ), has been developed using an simple and efficient "local" algorithm.
12.2 Silva's [29] record is broken on a personal computer, and it is possible to reach values of the order of $2 \mathrm{n}=10^{1000}$ with a reasonable computation time (less than three hours for the evaluation of ten terms $U_{2 n}$ and $V_{2 n}$ ).
12.3 For a given integer $\mathrm{n} \geq 49$, the evaluation of the terms $U_{2 n}$ and $V_{2 n}$ does not require the computing of all previous terms $U_{2 k}$ and $V_{2 k},(1 \leq \mathrm{k}<\mathrm{n}-1)$. we just need to know the primes $p_{l}, V_{2 r}$ such that :
(12.3.1) $\quad p_{l} \leq 7(\ln (2 n))^{1.3}$ and $2 n-7(\ln (2 n))^{1.3} \leq V_{2 r} \leq 2 n \quad$ (on average).

This property allows quick computing of $U_{2 n}$ and $V_{2 n}$ even for values of 2 n of the order of $10^{1000}$.
12.4 Therefore, the strong Euler-Goldbach and the Lagrange-Lemoine-Levy conjectures are true.

## References

[1] L. Adleman, K. Mc Curley (1994) Open Problems in Number Theoretic Complexity, II. Algorithmic number theory 291-322.
[2] C. Axler (2019) "New Estimates for the nth Prime" 19.4.2 2 Journal of Integer Sequences 22: 30.
[3] E. Bombieri Davenport (1966) "Small differences between prime numbers", Proc. Roy. Soc. Ser 293: 1-18.
[4] RC. Baker, Harman G. (1996) "The difffference between consecutive primes". Proc. London Math. Soc 72: 261-80.
[5] RC. Baker, Harman G, Pintz J (2001) "The difffference between consecutive primes". II. Proc. London Math. Soc 83: 532-62.
[6] JR. Chen (1966) "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao 17: 385-6.
[7] M. Cipolla (1902) "La determinazione assintotica dell n imo numero primo", Rend. Acad. Sci. Fis. Mat. Napoli 8.
[8] H. Cramer (1986) "On the order of magnitude of the difference between consecutive prime numbers", Acta Arithmetica 2: 23-46
[9] N. Dawar (2023) "Lemoine’s Conjecture: A Limited Solution Using Computers", TechRxiv Archive online.
[10] P. Erdos (1949) "On a new method in elementary number theory which leads to an elementary proof of the prime number theo-rem", Proc. Natl. Acad. Sci. USA 36: 374-84.
[11] Euclid (1994) (trans. Bernard Vitrac), "Les éléments d'Euclide", Ed. PUF Paris, vol.2, p. 444-446 and 339-41.
[12] A. Granville (1995) "Harald Cramér and the distribution of prime numbers", Scandinavian Actuarial Journal 1: 12-28.
[13] J. Hadamard (1896) "On the zeros of the function $\zeta(\mathrm{s})$ of Riemann". C. R. 122, p.1470-1473 (1896), and "On the distribution of zeros of the function $\zeta^{\prime}(\mathrm{s})$ and its arithmetical consequences"' S. M. F. Bull. 24: 199-220.
[14] GH. Hardy, Wright (2008) "An introduction to the Theory of numbers", Oxford : Oxford University Press 621.
[15] GH. Hardy, JE. Littlewood (1922) Some problems of 'partitio numerorum'; III: On the expression of a number as a sum of primes (Acta Math 44: 1-70.
[16] H. Helfgott, Platt (2013) "The ternary Goldbach conjecture", Gaz. Math. Soc. Math. Fr. 140, pp. 5-18 (2014). "The weak Goldbach conjecture", Gac. R. Soc. Mat. Esp. 16: 709-26. "Numerical verification of the ternary Goldbach conjecture up to 8.875.10 ${ }^{30}$ ", Exp. Math 22: 406-9.
[17] L. Hodges (1993) "A lesser-known Goldbach conjecture", Math. Mag 66: 45-7.
[18] H. Iwaniec, Pintz (1984) "Primes in short intervals". Monatsh. Math 98: 115-43.
[19] JO. Kiltinen, PB. Young (1985) "Goldbach, Lemoine, and a Know/Don’t Know Problem", Mathematics Magazine 58: 195-203.
[20] E. Landau (1953) "Handbuch der Lehre von der Verteiligung der Primzahlen", vol. 1 and vol. 2 (1909), published by Chelsea Publishing Company.
[21] E. Lemoine (1894) "L'intermédiaire de mathématiciens" 3: 151
[22] H. Levy (1963) "On Goldbach's conjecture", Math. Gaz." 47: 274
[23] J. Littlewood (1914) "Sur la distribution des nombres premiers", CRAS Paris 158: 1869-75.
[24] H. Maier (1985) "Primes in short intervals". Michigan Math. J 32: 221-5.
[25] TR. Nicely (1999) "New maximal prime gaps and first occurrences", Mathematics of Computation, 68: 1311-5.
[26] O. Ramaré, Saouter (2003) "Short effective intervals containing primes", J. Number theory, 98: 10-33.
[27] D. Shanks (1964) "On Maximal Gaps between Successive Primes", Mathematics of Computation, American Mathematical Society, 18: 646-51.
[28] L. Schnirelmann (1942) "Schnirelmann density", Wikipedia, (on line, internet) and "A proof of the fundamental theorem on the density of sums of sets of positive integers", Annals of Math, 2nd series 43: 523-7.
[29] TO. e Silva, Herzog Pardi (2014) "Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4.10^{18}{ }^{\prime \prime}$. Math. Comput 288: 2033-2060.
[30] Z-W. Sun (2008) "On sums of primes and triangular numbers" » archive., arXiv.
[31] T. Tao (2014) "Every odd number greater than 1 is the sum of at most five primes", Math. Comput 286: 997-1038.
[32] P. Tchebychev (1852) "Mémoire sur les nombres premiers" J. math. pures et appliquées, 1ère série, t. 17: 366-90.
[33] CJ. de La Vallée-Poussin (1896) "Recherches analytiques sur la théorie des nombres premiers", Brux. S. sc. 21: 183-256, 281362, 363-97, 21: 351-68.
[34] A. Vinogradov (1937) "Representation of an odd number as a sum of three primes". Dokl. Akad.Nauk. SSR 15: 291-4.
[35] EW. Weisstein (1999) "Levy's Conjecture" archive., sur MathWorld, CRC Concise Encyclopédie de mathématiques (CRC Press) 733-4.
[36] Y. Zhang (2014) "Bounded gaps between primes", Ann. Math 179: 1121-74.

