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Introduction

Abstract
In this paper, we used an SIR-SI model to formulate a mathematical model of malaria transmission in Democratic Republic of the 
Congo. We evaluated the basic reproduction number, and studied the existence of local stability of disease-free and endemic equilibria. 
The global stability of the disease-free equilibrium (DFE) and endemic equilibrium was also studied. It was shown that the model 
exhibits backward bifurcation phenomenon where the stable (DFE) exists with a stable endemic equilibrium. Numerical simulations 
were conducted to confirm our analytic results. Next, we used the optimal control (the use of treated bet net u1(t) and treatment with 
drugs u2(t)) as a tool for reducing the total number of malaria infected individuals and that of infected mosquitoes respectively. Our 
numerical simulations results indicate that the number of infected individuals always lead to decrease under the use of treated bet net 
and treatment with drugs controls respectively.

Keywords: Malaria; Stability Analysis; Backward Bifurcation; Optimal Control.

Malaria is a contagious disease caused by infected female Anopheles mosquitoes. In 2016, 216 million malaria cases occurred 
in the world compared with 237 and 211 million cases in 2010 and 2015 respectively. Fifteen countries are accounted for 80% of 
global malaria deaths, all of them are in Africa (Sub-Saharan Africa), except India [1]. The Democratic Republic of the Congo 
(DRC) is one of the two highest leading contributors to the global burden of illness due to malaria [2]. Daily in the DRC, more 
than 400 children die, and nearly half of the deaths is caused by malaria [3]. Mathematical models are very important tools in 
understanding the dynamics of the vector-transmitted disease such as malaria. Furthermore, optimal control is a very useful and 
important field in both theoretical and applications. A lot of research has been conducted on the mathematical modeling of malaria 
transmission since the first model was introduced by Ronald Ross [4]. Juan Wnang, et al. considered SIR-SI malaria endemic 
model [5]. They derived the  and investigated the local and global stability of disease free equilibrium. They proved that the 
unique endemic equilibrium is globally asymptotically stable under certain specific conditions. According to their results their 
model shows backward bifurcation when   < 1. Edoardo Beretta, et al. analyzed a mathematical model for malaria transmission 
with asymptomatic carriers in a two age groups in human population [6]. Their results show that the key parameters that can 
be identified such as a threshold level, built on these parameters for example mosquitoes biting rate and the mortality rate of 
mosquitoes. When  < 1 the endemic equilibrium exist, and when  < 1 the disease die out. Xiaomei Feng, et al. considered 
a deterministic malaria transmission model with standard incidence rate and treatment, with the assumption that a part of the 
individuals who are recovered or treated from the disease spontaneously, shift to the recovered class with temporary immunity, 
while others re-enter the susceptible class [7]. Their stability analysis shows that when  < 1, two endemic equilibrium may 
exists and the backward bifurcation is possible for malaria to persist even if  < 1. Their numerical simulations support their 
analytical results. They used their model to simulate real data from China 2003-2013. According to their simulation results malaria 
can be eradicated in China. They computed their  and obtained 0.0161. G.R. Kelatlhegile, et al. formulated and analyzed a 
mathematical model for the prevention of a disease that spread horizontally and vertically in a population of varying size [8]. They 
investigated the stability analysis of their model and their results show that there exists more than one endemic equilibrium. for 
the model when  < 1. Their simulation results justified their analytical results. S.kim, et al. Studied and analyzed SIR-SI vector-
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bias malaria transmission model to determine how it affects the dynamics of the disease [9]. Their results show that considering 
the vector-bias effect in different areas help to predicate the dynamics future of malaria and to make decisions for establishing 
control strategy. Liming Cai, et al. introduced a mathematical model for malaria transmission with an asymptomatic compartment 
in human and exposed compartments in both human and mosquito [10]. They investigated the stability analysis of their model 
and their simulation results suggest that the total spread of the disease is high if all individuals show symptoms upon infection. 
Furthermore, they applied the optimal control theory to the model by using bed-net and treatment as important tools for reducing 
the number of symptomatic and asymptomatic individuals. According to their simulation results the optimal control strategies 
always lead to decrease in the symptomatic infectious individuals and may lead to increase the number of asymptomatic infectious 
individuals. S.R. Gani and S.V. Halawar formulated a nonlinear mathematical model to control the spread of infectious disease 
using the role of awareness programs by media and antiviral treatment [11]. According to their results the most effective strategies 
to control the disease are the combination of 3 control measures (the successful campaign of awareness programs by media, 
controlling effort that alters infectious cases receiving treatment and strengthening effort made on awareness campaign programs) 
are the most cost effective control strategies and this indicates that the implementation of the three control measures is necessary in 
order to control the disease outbreak. D. Khamis, et al. used an optimal control frame work based on coupled models of mosquito 
pop- ulation dynamics malaria epidemiology to investigate the cost-effectiveness of combining vector control with drug therapies 
in homogeneous environments with and without vector control migration [12]. Their results shows that the combining vector 
control and drug therapies is the most effective and efficient use of resources. Recently, Fuzzy Optimal Control is the most useful 
in control theory see [13-15].  

In this article, we formulate a new model, which is different from (J.Wang, et al.) and all the above mentioned mathematical models 
of malaria transmission in the sense that, we divided recovered human population into two groups, the first group has partial 
immunity after recovery and they re-enter the susceptible class again. The other group may be infected immediately again after 
recovery, by an infectious mosquitoes with transmission probability of recovered human δ < 1, which is less than the probability 
of susceptible human [5].

Moreover, we applied the optimal control theory to our model in terms of treated bed-net use and treatment with drugs to control 
the disease. This article is structured as follows: we introduced the model description in Section 2. In Section 3, stability analysis 
of the model: including positivity and boundedness of the solution, existence of equilibria and backward bifurcation respectively, 
and global asymptotic stability of diseasefree equilibrium is proved. Numerical simulations have been presented in Section 4. 
Sensitivity analysis of R0 is given in Section 5. In Section 6, numerically, we investigated optimal control strategy and applied it to 
(bet-net use and treatment with drugs). Section 7, is made up of conclusion of our article.

The human population of our model is divided into three classes: Susceptible human Sh(t), Infectious human Ih(t), and Recovered 
human Rh(t) and the mosquitoes population is in two classes: Susceptible mosquito Sm(t), and Infectious mosquito Im(t).  Nh(t)  and 

Figure 1: Democratic Republic of the Congo, Reported cases of malaria from WHO [23,24]

Mathematical Model
Model Description
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Since the total population of human and mosquitoes are constants, that is 0h mdN dN
dt dt

= = , then in order to simplify model (2.1) 
we normalize the human and mosquito population. We denote ,  ,  ,   , ,   h h h m m m

h h m m
h h h m m h

S I R S I Ns i rh s i q
N N N N N N

= = == = = , and define in the 
positive region as

Sine    1m m ms i N+ = = , this implies that  1  m ms i= − , the system (2.1) can be written as

Sine 1m ms i= −  then we can omit sm from the model (3.1), and rearranged as

Nm(t) denote the total population of human and mosquitoes respectively, so that Nh(t) = Sh + Ih + Rh and Nm = Sm + Im. We assume 
that the bite from mosquito is randomly and the recovered humans are in two groups as mentioned earlier, one of the groups with 
partial immunity re-enter the susceptible class again and the other without immunity become infectious again. Also we assumed 
that the total population of the human and mosquito are constant and that mosquitoes do not recover from the infected class. All 
the above mentioned assumptions lead to the following system:

Where the average life span of humans in endemic area is 1
µ that is µ is the natural death rate of humans. Similarly, the average life 

span of mosquitoes is 1
ψ , where ψ is the natural death rate of mosquitoes. Moreover a is the mosquitoes biting rate and the human 

can loss their immunity at rate ρ. The humans and mosquitoes transmission rates are γh and γm respectively. Also the infectious 
individual can be recovered at rate α and the transmission property of the human recovery is given by δ. In addition to that, all the 
parameter values were listed in Table 2.

With: Sh(0) > 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Sm(0) > 0, Im(0) ≥ 0.

Model Analysis
Positivity and boundedness of the solutions

( ) 5  ,  ,  ,  ,  : 0     1,  0 }  {  1h h h m m h h h m ms i r s i R s i r S i+Σ = ∈ ≤ + + = ≤ + ≤

(3.2)

,

,

,

,

(3.1)

,

,

,
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,

(2.1)

,

,

,

,

,

( ) 4  ,  ,  ,  : 0     1,  0   1{ },h h h m h h h ms i r i R s i r i+ϒ = ∈ ≤ + + = ≤ ≤

Where the model (3.2) is defined on the feasible region
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to find the eginvalues of the above matrix we use determinant  

The reproduction number  is given by the spectral radius of 1fv−  which is denoted by 1( )fvσ − and defined as:

Where σ is the spectral radius of the next generation matrix 1fv− .

Local stability of disease-free equilibrium: In this subsection, we investigate the stability of disease-free equilibrium P0 by 
considering the model (3.2), by taking the Jacobian matrix and obtained

Differentiate F and V partially with respect to: ,  ,  h h mi r i  at ( )0 1,  0,  0,  0P  we obtained:

It is clear that the system (3.2) has a disease-free equilibrium P0 = (1, 0, 0, 0). We used the next generation matrix method in [16,17], 
to find the reproduction number  at 0P , defined F as the matrix for new infectious individuals and V is the matrix of remaining 
transfer individuals. For more information about F,V and the next generation matrix technique see [16-19].

Existence of Equilibria

,

,

(3.3)

the two eigenvalues of the above jacobian matrix are clearly negative ( )1 2.    ( )i e and pλ µ λ µ= − = − + . The other two roots can 
be characterized as:

,

,

Where

(3.4),

,

,

,

Using the Routh-Hurwitz Criterion [20] it can be seen that the two eigenvalues of the characteristic equation (3.4) have negative 
real parts if and only if

and 10,  0,  so 0.bµ α> > >  
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Endemic Equilibrium and Bifurcation: To find the endemic equilibrium of the system (3.2), let: 0h h h m mds di dr ds di
dt dt dt dt dt

= = = = =  
after simple calculation we get an endemic equilibrium ( ),  ,  ,  h h h mP S i r i∗ ∗ ∗ ∗ ∗=  for the model (3.2) as

Then we substitute equation (3.6) into the second equation of system (3.2), to obtain a quadratic equation defined by

Where:

if  < 1, then 2 0,b >  hence 1 2 0,b b >

Thus, we have the following theorem.

Theorem 3.1. The disease-free equilibrium P0 of model (3.2) is locally asymptotically stable if and only if   < 1 and the inequalities 
(3.5) are satisfied.

1 1 20, 0,b b b> > (3.5)

Case c1 c2 c3 No. of sign changes No. of possible real roots

1 + + +  < 1 0 0

2 + + -  > 1 1 1

3 + - +  < 1 2 0,2

4 + - -  > 1 1 1
Table 1: Number of possible real roots of equation (3.7)

Consequently, from equations (3.7), (3.8) and Table 1, it is easy to see that the possibility of  more than one endemic equilibria exist, 
thus, backward bifurcations phenomenon may occur. Consequently, we have the following theorem.

Theorem 3.2. The system (3.2) has a unique endemic equilibrium P*, if   > 1 and When cases 2, 4 are satisfied and the system 
(3.2) could have more than one endemic equilibrium if  < 1 and case 3 is satisfied    
That is the following conditions are true for model (3.2) 

(i) if c3 < 0 then  > 1, exactly the system (3.2) have one endemic equilibrium. 
(ii) Exactly one unique endemic equilibrium if c2 < 0 and c2 = 0 or 2

2c − 4c2c3 = 0, 
(iii) Exactly two endemic equilibrium if c3 > 0, (i.e.  < 1), c2 < 0, and 2

2c − 4c1c3 > 0, 
(iv) No endemic equilibrium otherwise.

(3.8)

,

,
,

(3.7),

(3.6)
,

,

The system (3.1) can be written in the form ( )x t′  = F(X), where X = (x1, x2, x3, x4, x5)
T = (sh, ih, rh, sm, im)T and F(X)= (f1, f2, f3, f4, f5)

T, 
denotes the right hand sides of the system (3.2) as:

(3.9)

,

,

,

,

,
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after simple calculation it is easy to see that J(P0) with *
h hγ γ=  denoted by 

h
J
γ ∗ , has a simple zero eigenvalue and other eigenvalues 

have negative real part. i.e ( ) ( ) ( )2 2 2 2
1 1 3 4 4

1 1 0,   ,   ,  2   4  1 1 ,  
2 2

2   4
2 2h m h mµ µ µ a q µ a qλ λ λ ρ λ α α γ γ λ α α γ γ= = − = − + + − = = − − 


− + +


− .

Hence, the dynamics of the system (3.8) satisfy the conditions of the centre manifold theory [21]. Moreover, we show that the 
system (3.8) is equivalent to system (3.2), underdoes backward bifurcation at  = 1, then we apply the Center Manifold Theorem 
to test the dynamics of (3.2) close to *

h hγ γ=  . 

The Jacobian matrix of system (3.2), denoted by J (P0) at *
h hγ γ= , has a right and a left eigenvectors associated  with zero eigenvalue, 

given by: w = (w1, w2, w3, w4, w5)
T , and v = (v1, v2, v3, v4, v5) respectively. 

Where

and

In order to show the existence of backward bifurcation, we compute 2
i

i j

f
x x
∂
∂ ∂

, where i, j = 1, 2, 3, 4, 5 at P0 and obtain

We evaluate the Jacobian matrix of the system (3.9) at P0, which is denoted by J(P0), and it is given by

Next, we consider  = 1. Furthermore, let *
h hγ γ=  chosen to be the bifurcation parameter. Solving equation (3.3) for γh with 

 = 1 yields 

( )
( )( ) ( ) ( )( ) ( )

* * * 2 *
5 5 5 5

1 2 3 4 5 5

  
 ,  ,  ,  ,   .

 
h h h m haq µ w aq w a q w a q ww w w w w w

µ µ µ µ µ
γ α ρ γ α γ γ γ

ρ ρ α ρ α ψ ψ α
− + + −

= = = = =
+ + + + + +

(3.10)

,

(3.11)

Now we compute a and b defined in Theorem 4.1 [21] of Castillo-Chavez and Song as follows

and

Since the factor b is always positive, then the model (3.2) undergoes backward bifurcation at R0 = 1, whenever

Then we can establish from the above discussions the following theorem. 

Theorem 3.3. The system (3.2) undergoes a backward bifurcation at  whenever inequality (3.15) holds

(3.13)( ) ( ) ( )
2 22

52
2 5, , 1 , 1 , 1

0,  0,  0,  n n nk
k i j h i j h i j hk i j i j i j

i j i j i j

f ffa v w w v w w v w w
x x x x x x

γ γ γ∗ ∗ ∗
= = =

∂ ∂∂
= = +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑

2 1 5 2 3 5 5 2 42 2 2h h mv waq aq aw v w w v w wγ δγ γ+ +=

( ) ( ) ( )
22 2

52 2
2 1 5 2 3 5 5 2 4, , 1 , 1 , 1

1 5 3 5 2 5

2 0,  2 0,  2 0,  n n n
h h hk i j i j i j

ff fa v w w v w w v w w
x x x x x x

γ γ γ∗ ∗ ∗
= = =

∂∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑

(3.15)2 1 5 2 3 5 5 2 42 2 2 0,h h mv w w va aq a w w va w wqγ δγ γ+ >+=

,
( )*

2

  
  

 h h
m

µ
a q

α ψ
γ γ

γ
+

= =

2
1 2 2 3 4 50,  ,  0,  0,  .haq vv v v v v v γ

ψ

∗

= = = = =

(3.12)

2 2 2 2 2 2
2 2 2 2 2 2

1 5 5 1 3 5 5 3 2 4 4 2
2 2

5 5

2 4 4 2

,  ,  

,

h h m

h

f f f f f faq aq a
x x x x x x x x x x x x

f f a
x x x x

γ δγ γ

γ

∂ ∂ ∂ ∂ ∂ ∂
= = = = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
= =

∂ ∂ ∂ ∂

(3.14)( ) ( )
2 2

2 2 22
2 2, , 1 , 1

0,  0,  0n nk
k i j h i h hk i j i j

i h i h

f fb v w w v w a q v
x x

γ γ γ
γ γ

∗ ∗ ∗
= =

∂ ∂
= = =

∂
>

∂ ∂ ∂∑ ∑
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Proof  At *P , the jacobian matrix J ( *P ) evaluated as

The roots of the matrix (3.16) can be determined from the following characteristics equation

Where

Theorem 3.4. For  > 1, the endemic equilibrium *P  of the system (3.2) is locally asymptotically stable if the condition (3.18) is 
satisfied, otherwise unstable. 

.

,

,

,

(3.17),

(3.16),

The Rouuth-Hurtwiz criteria [22] for equation (3.17) will give four negative eigenvalues if and only  if ai > 0, for i = 1, 2, 3, 4 and 
the following condition is satisfied

Thus, the system (3.2) about. And *P  is locally asymptotically stable if   > 1 and the condition (3.18) is satisfied.

Theorem 3.5. The disease-free equilibrium P0 of model (3.2) is globally asymptotically stable if R0 < 1 and satisfies δ < 1.

Proof. To prove the global stability of P0 we define the Lyapunov function as

Global Asymptotic Stability of Disease-Free Equilibrium 

(3.18),

Then from  < 1 and δ < 1, we have V′  = 0 if and only if im = 0. And from the second equation of (3.2), we have limt→∞ ih(t) = 0 also 
from the first and third equations of (3.2) we have limt→∞ rh(t) = 0, and limt→∞ sh(t) = 1, limt→∞ sm(t) = 1, respectively. Furthermore, 
the largest compact invariant set in (sh, ih, rh, sm, im) ∈  Υ : V′  = 0 is the singleton P0, where P0= is the disease-free equilibrium point. 
Using the LaSalle’s invariant principle, it implies that P0 is globally asymptotically stable in Υ if R0 < 1 and δ < 1 Hence proved.

Local stability of endemic equilibrium 
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Parameter Parameter description Value References

a Mosquitoes bitting rate 0.4 [25]

ψ Natural death rate of mosquitoes 0.1 [25]

µ Natural death rate of humans 4.72 × 10-5 [26]

ρ Loss of immunity rate for humans 2.74 × 10-3 [27]

α Recovery rate of humans 3.5 × 10-3 [25]

γh Transmission rate in humans 0.048 [27]

γm Transmission rate in mosquito 0.48 [27]

δ Transmission probability of recovered human 0.043 fitting
Table 2: Description of parameters of the model (2.1)

Figure 2: Comparisons of the reported malaria cases from WHO (red curve) and the solution of infectious human Ih(t) for model (2.1), (a): Simulation of 
malaria reported cases in Democratic Republic of the Congo from 2007 to 2016, (b): Prediction of malaria cases for Democratic Republic of the Congo 2007 
to 2030.

(a) (b)

Figure 3: Solution of the model (2.1) with parameter for Democratic Republic of the Congo, (a) Simulation the number of human from 
2007 to 2500, (b) Simulation the number of human from 2007 to 3000

(a) (b)

Numerical Simulations
We used our model to simulate malaria reported data of the DRC, Figure 1 shows that the reported malaria case was less than 
2000. From 2000-2006, and started to increase after that to more than 15 million cases at 2016 [23,24]. However, we ignore the data 
from 2000-2006, from our simulations, because there was a war and conflicts between the local communities in DRC at that period 
of time. All the parameter values for our model are presented in Table 2. According to these parameter values, we implemented 
numerical simulations of our model and obtained a suitable fitting between the infected human of model (2.1) and the malaria 
reported cases of (DRC) from WHO, from 2007- 2016, see (Figures 2a and 2b). In (Figures 2a, 2b and Figure 4a) we used the 
parameter values in Table 2 to simulate the model compartments. Moreover the influence of initial size of susceptible mosquitoes 
on the number of human malaria cases in DRC (Figure 4b). The basic reproduction number of (DRC) is estimated to be 4.5589 
and the disease is endemic. (Figures 5a and 5b) show that solution of the model (2.1) with parameter values given in Table 2 for 
Democratic Republic of the Congo.
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We used sensitivity analysis to determine the influence of the model parameter values used on the model. This analysis provides 
information on our model parameters that have important impact of theoretical model for malaria transmission in relationship to 
the basic reproduction number . In order to perform this analysis, we use the normalized forward sensitivity index of a variable 
to a parameter.

Definition 5.1. The normalized forward sensitivity index of a variable r that depends differentially on a parameters is defined as:

Sensitivity Analysis

 Parameter Sensitivity index

1 a 1

2 µ -0.75

3 α 0.59

4 ψ -0.5

5 γh 0.5

7 γm 0.5

8 q 0.5

Table 3: Sensitivity indices of   to parameters for model (3.1)

,s
r

r s
s r

γ ∂
= ×
∂

(5.1)

Figure 4: (a): Solution of the model (2.1) with parameters for Democratic Republic of the Congo with the number of mosquito from 2007 to 2500
(b): The influence of initial size of susceptible mosquito on the number of human malaria in Democratic Republic of the Congo

(b)(a)

Figure 5: Solution of the model (2.1) with parameter for Democratic Republic of the Congo when  < 1, (a) Simulation the number of human from 
2007 to 2016, (b) Simulation the number of mosquito from 2007 to 2016

(b)(a)
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In detail the sensitivity indices of   based on the computed are listed in Table 3. The parameters are ordered in such a way that it 
begins from the biggest sensitive to the smallest sensitive one. The most sensitive parameter from Table 3, are mosquitoes bitting 
rate, natural death rate of humans, loss of immunity rate for humans, recovery rate of humans, transmission rate in humans, 
transmission rate in mosquito, natural death rate of mosquito (a, µ, α, ψ, γh, γm), and the least parameter is q. At the endemic 
equilibrium for the model (2.1)

(a) If the value of a is decreased to 0.087 or less and the other values are maintained same then  < 1 (0.9916).
(b) If we increased the value of α from 3 23.5 10  7.9 10to− −× ×  then  < 1, i.e.  is decreased from 4.5589 to 0.9978.
(c) If the value of hγ  is decreased to 0.023 and the other parameters maintains the same then  < 1, (0.9979).
(d) If the value of mγ  is decreased to 0.023 and the other parameters maintains same then  < 1, (0.9979).

Optimal control theory deals with the problem of finding control law for a given system such that a certain optimality criterion is 
achieved [29]. Optimal control is the process of determining and state trajectories for a dynamic system over a period of time to 
minimize a performance index [30].

Optimal Control

In this section, we make use of Pontryagin’s Principle in order to find the necessary conditions that establish the presence of optimal 
control of the malaria transmission model. We include time dependent controls into our model and attempt to explore the suitable 
optimal control strategy for setting the malaria under the control. Many optimal control strategies used to control and reduce 
malaria transmission with different cost depends on many factors such as: treated bed nets, treatment with drugs, indoor residual 
spray(IRS), Long-Lasting Insecticide Treated Net (LLITN), the insecticide spray on the breeding grounds the mosquitoes, etc. Also 
using of the Sterile Insect Technique (SIT), will reduce the mosquito population which helps to reduce malaria transmission in the 
specific area for more information see [31-33]. Because the malaria is spread widely in the DRC, specially in the country side which 
has many forest and heavy rainfall that increase the mosquitoes population. We used two control variables, u1(t) and u2(t) which 
represents the effort on preventing malaria infections through the use of bed-nets and treatment with drugs respectively to see the 
effects of them on malaria transmission on the Congo,DR. Our objective function is similar to and it’s given by

Where A is the balancing cost factor due to scale and c1, c2 denote the weighting constants for making use of bet-nets and treatment 
with drugs which has the potential of reducing the spread of the disease [9,28]. Consequently, we attempt to expect an optimal 
controls *

1u  and *
2u  such that,

( ) ( )2 2
1 2 1 1 2 20
, ,ft

hJ u u AI c u c u dt= + +∫ (6.1)

The optimal control must conform to the necessary conditions that is emanated from the Pontryagin Maximum Principle [34].This 
concept transforms the equations (6.2) and (6.3) into a type of problem characterised by minimizing pointwise a Hamililtonian H, 
with respect to u1 and u2:

(6.2)( ) ( ) ( )* *
1 2 1 2 1 2, min , , { , 0 1, 1,2}.iJ u u J u u u u u i= Γ = ≤ ≤ =

(6.4)

(6.3)

,

,

,

,

,
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Where 
, , , ,

,
h h h m mS I R S Iλ λ λ λ λ  represents the adjoint variables. The system solution is attained by suitably taking partial derivatives of 

the Hamiltonian (6.4) with respect to the associated state variable.

Where i = Sh, Ih, Rh, Sm, Im with transversality conditions

and

Proof: Theorem 4.1 and Corollary 4.1 of [34] gives. the conditions of possible existence of an optimal control based on the convexity 
of the integrand of J (u1, u2) with respect to u1 and u2 a priori boundedness of the state solutions, and the resulting Lipschitz 
characteristics of the state system of the ODE’s with the state variables [34]. The Hamiltonian function determines at the optimal 
control level leads to the adjoint variables. Thus, the adjoint equations can be reordered as

Theorem 6.1. Given optimal controls *
1u , *

2u  and solutions Sh, Ih, Rh, Sm, Im of the corresponding state System (6.3) and (6.4) that 
minimize J (u1, u2) over Γ . Then there exists adjoint variables 

, , , ,
,

h h h m mS I R S Iλ λ λ λ λ satisfying 

id H
dt i
λ− ∂

=
∂

(6.5)

(6.7)

(6.8)

(6.6)( ) ( ) ( ) ( ) ( )   0
h h h m mS f I f R f S f I ft t t t tλ λ λ λ λ= = = = = ,

(6.9)

,

,

,

,

,

In this subsection, we used MATLAB program to obtain the numerical simulation solutions. Table 3 presents the parameter values 
used for these simulations

Numerical Simulations for Optimal Control

Prevention of malaria through the use of treated bed-net (u1) only: Malaria prevention (treated bed net) control (u1) was used to 
optimized the objective function J, while we set the other control u2 to zero. We observed in Figure 6(a) that these is a significant 
difference between the control (u1 ≠ 0, u2 = 0) and without control (u1 = 0, u2 = 0). It was also observed in Figure 6(a) that the 
number of malaria infected humans is still increasing even after the activation of the control. This implies that this strategy is 
not effective in controling the number of malaria infected humans Ih.  In Figure 6(b), there is a significant difference between the 
control (u1 ≠ 0, u2 = 0) and without control (u1 = 0, u2 = 0). The use of the bed net reduces the number of infected mosquitoes Im 
and would eventually reduce the spread of malaria. Hence the use of bed net as a strategy to control infected mosquitoes yields a 
positive result.

Prevention of malaria through treatment with drugs (u2) only: In this strategy, treatment effort (u2) was employed to optimize the 
objective function J, while the prevention through the use of bed net (u1) was set to zero. It can be seen that there is no significant 
difference between the two graphs represented as (Figures 7a and 7b) respectively. It was also observed that the strategy used in 
reducing the number of malaria infected mosquitoes and that of humans respectively is not the best. This is due the to the fact that the 
number malaria humans Ih and malaria infected mosquitoes (Im) are still increasing. Hence the use of treatment (u2) control only as 
a strategy to reduced the number of malaria, malaria infected mosquitoes and malaria infected humans respectively is not effective.
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Figure 6: Simulations of the model showing the effect of malaria prevention only on transmission. Figure 6 (a) and (b) represents the behavior infected humans 
and infected mosquitoes respectively. Dashed line represents system without control (u1 = 0, u2 = 0) and solid line shows the system with control (u1 ≠ 0, u2 = 0)

(a) (b)

Figure 7: Simulations of the model showing the effect of malaria treatment only on transmission. Figures 7 (a) and (b) represents the behavior infected 
humans and infected mosquitoes respectively. Dashed line represents system without control (u1 = 0, u2 = 0) and solid line shows the system with control 
(u1 = 0, u2 ≠ 0)

(a) (b)

Figure 8: Simulations of the model showing the effect of malaria prevention only on transmission. Figures 6 (a) and (b) represents the behavior infected mosquitoes 
and infected human respectively. Dashed line represents system without control (u1 = 0, u2 = 0) and solid line shows the system with control (u1 ≠ 0, u2 ≠ 0)  

(a) (b)

Prevention of malaria through the use of treated bed net (u1) and treatment with drugs (u2) controls: In this strategy, all the two 
controls are explored in order to optimize the objective function. It is obvious in Figure 8a and 8b that there is a significant difference 
between the malaria infected mosquitoes and infected humans without control and that of malaria, malaria infected humans with 
control. It was observed in both that the activation of the two controls mechanisms are able to reduce the number of malaria infected 
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Conclusion
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In this paper, we studied an SIR-SI malaria transmission model. The population used for this model is made up of mosquitoes and 
humans. The recovered human population was divided into two groups, one group can be infected immediately by the disease to 
joined infectious class Ih(t), and the other group recovered with immunity and re-enter the susceptible class Sh(t). The fundamental 
property of the model is investigated, in addition to, the basic reproduction number . The equilibria of the model is studied, 
and the disease-free equilibrium is found to be locally and globally asymptotically stable when  < 1 respectively. We applied the 
center manifold theory to study the stability of endemic equilibrium and the results were that our model is asymptotically stable. 
The Pontryagin's Maximum Principle is used to determine the fundamental conditions necessary for elective control of malaria 
through the use of treated bed-net (u1(t)) and treatment with drugs (u2(t)) in the community. Our numerical simulation results 
suggest that using u1(t) and u2(t) together we can reduce the number of malaria infected individuals and malaria infected mosquitoes 
in the Democratic Republic of the Congo. In our future work we consider adding Indoor Residual Spray (IRS) and Long-Lasting 
Insecticide Treated Net (LLITN) malaria control strategies to our model. We would also try to incorporate the incubation stage of 
humans as well as that of mosquitoes in our future model.

mosquitoes and that of malaria infected humans (Figures 8a and 8b). Though the impact of this strategy is greater in Figure 8(b) as 
compared to Figure 8(a). This means that strategy is able to reduce more infected mosquitoes than that of malaria infected humans.
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